人教版七年级数学重点问题解析(共19页).doc
《人教版七年级数学重点问题解析(共19页).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学重点问题解析(共19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上新人教版七年级数学重点问题解析有理数部分1填空:(1)当a_时,a与a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是_;(3)在数轴上,A点表示1,与A点距离3个单位长度的点所表示的数是_;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是_2用“有”、“没有”填空:在有理数集合里,_最大的负数,_最小的正数,_绝对值最小的有理数3用“都是”、“都不是”、“不都是”填空:(1)所有的整数_负整数;(2)小学里学过的数_正数;(3)带有“”号的数_正数;(4)有理数的绝对值_正数;(5)若|a|b|=0,则a,b_零;
2、(6)比负数大的数_正数4用“一定”、“不一定”、“一定不”填空:(1)a_是负数;(2)当ab时,_有|a|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数_大于距原点较远的点所表示的数;(4)|x|y|_是正数;(5)一个数_大于它的相反数;(6)一个数_小于或等于它的绝对值;5把下列各数从小到大,用“”号连接:并用“”连接起来8填空:(1)如果x=(11),那么x=_;(2)绝对值不大于4的负整数是_;(3)绝对值小于4.5而大于3的整数是_9根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分
3、母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值10代数式|x|的意义是什么?11用适当的符号(、)填空:(1)若a是负数,则a_a;(2)若a是负数,则a_0;(3)如果a0,且|a|b|,那么a_ b12写出绝对值不大于2的整数13由|x|=a能推出x=a吗?14由|a|=|b|一定能得出a=b吗?15绝对值小于5的偶数是几?16用代数式表示:比a的相反数大11的数17用语言叙述代数式:a318算式35729如何读?19把下列各式先改写成省略括号的和的形式,再求出各式的值(1)(7)(4)(9)(2)(5);(2)(5)(7)(6)420计算下列各题:21
4、用适当的符号(、)填空:(1)若b为负数,则ab_a;(2)若a0,b0,则ab_0;(3)若a为负数,则3a_322若a为有理数,求a的相反数与a的绝对值的和23若|a|=4,|b|=2,且|ab|=ab,求ab的值24列式并计算:7与15的绝对值的和25用简便方法计算: 26用“都”、“不都”、“都不”填空:(1)如果ab0,那么a,b_为零;(2)如果ab0,且ab0,那么a,b_为正数;(3)如果ab0,且ab0,那么a,b_为负数;(4)如果ab=0,且ab=0,那么a,b_为零27填空:(3)a,b为有理数,则ab是_;(4)a,b互为相反数,则(ab)a是_28填空:(1)如果四
5、个有理数相乘,积为负数,那么负因数个数是_;29用简便方法计算:30比较4a和4a的大小:31计算下列各题:(5)15126534下列叙述是否正确?若不正确,改正过来(1)平方等于16的数是(4)2;(2)(2)3的相反数是23;35计算下列各题;(1)0.752;(2)232解36已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(1)n2_是负数;(2)(1)2n1_是负数;(3)(1)n(1)n1_是零37下列各题中的横线处所填写的内容是否正确?若不正确,改正过来(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平
6、方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x0,那么x3=2738用“一定”、“不一定”或“一定不”填空:(1)有理数的平方_是正数;(2)一个负数的偶次幂_大于这个数的相反数;(3)小于1的数的平方_小于原数;(4)一个数的立方_小于它的平方39计算下列各题:(1)(32)3323;(2)24(2)4;(3)2(4)2;40用科学记数法记出下列各数:(1);(2)0.41判断并改错(只改动横线上的部分):(1)用四舍五入得到的近似数0.0130有4个有效数字(2)用四舍五入法,把0.63048精确到千分位的近似数是0.63(3)由四舍五入得到的近似数
7、3.70和3.7是一样的(4)由四舍五入得到的近似数4.7万,它精确到十分位42改错(只改动横线上的部分):(1)已知5.0362=25.36,那么50.362=253.6,0.=0.02536;(2)已知7.4273=409.7,那么74.273=4097,0.=0.04097;(3)已知3.412=11.63,那么(34.1)2=;(4)近似数2.40104精确到百分位,它的有效数字是2,4;(5)已知5.4953=165.9,x3=0.,则x=0.5495有理数错解诊断练习正确答案1(1)不等于0的有理数;(2)5,5;(3)2,4;(4)62(1)没有;(2)没有;(3)有3(1)不都
8、是;(2)不都是;(3)不都是;(4)不都是;(5)都是;(6)不都是4(1)不一定;(2)不一定;(3)不一定;(4)不一定;(5)不一定;(6)一定上面5,6,7题的原解错在没有掌握有理数特别是负数大小的比较8(1)11;(2)1,2,3,4;(3)4,410x绝对值的相反数11(1);(2);(3)122,1,0,1,213不一定能推出x=a,例如,若|x|=2则x值不存在14不一定能得出a=b,如|4|=|4|,但44152,4,0,2,416a1117a的相反数与3的差18读作:负三、正五、负七、正二、负九的和,或负三加五减七加二减九19(1)原式=74925=5;(2)原式=576
9、4=221;22当a0时,a|a|=0,当a0时,a|a|=2a23由|ab|=ab知ab0,根据这一条件,得a=4,b=2,所以ab=2;a=4,b=2,所以ab=6247|15|=715=826(1)都不;(2)都;(3)不都;(4)都27(1)正数、负数或零;(2)正数、负数或零;(3)正数、负数或零;(4)028(1)3或1;(2)b030当a0时,4a4a;当a=0时,4a=4a;当a0时,4a4a(5)15032当b0时,由|a|=|b|得a=b或a=b,33由ab0得a0且b0,或a0且b0,求得原式值为3或134(1)平方等于16的数是4;(2)(2)3的相反数是23;(3)(
10、5)10036(1)不一定;(2)一定;(3)一定37(1)负数或正数;(2)a=1,0,1;(3)a=0,1;(4)a327;(5)x32738(1)不一定;(2)不一定;(3)不一定;(4)不一定40(1)3.14108;(2)3.410-541(1)有3个有效数字;(2)0.630;(3)不一样;(4)千位42(1)2536,0.;(2),0.;(3)341;(4)百位,有效数字2,4,0;(5)0.05495整式的加减例1 下列说法正确的是( ) A. 的指数是0B. 没有系数 C. 3是一次单项式D. 3是单项式 分析:正确答案应选D。这道题主要是考查学生对单项式的次数和系数的理解。
11、选A或B的同学忽略了的指数或系数1都可以省略不写,选C的同学则没有理解单项式的次数是指字母的指数。 例2 多项式的次数是( ) A. 15次B. 6次C. 5次D. 4次 分析:易错答A、B、D。这是由于没有理解多项式的次数的意义造成的。正确答案应选C。 例3 下列式子中正确的是( ) A. B. C. D. 分析:易错答C。许多同学做题时由于马虎,看见字母相同就误以为是同类项,轻易地就上当,学习中务必要引起重视。正确答案选B。 例4 把多项式按的降幂排列后,它的第三项为( ) A. 4B. C. D. 分析:易错答B和D。选B的同学是用加法交换律按的降幂排列时没有连同“符号”考虑在内,选D的
12、同学则完全没有理解降幂排列的意义。正确答案应选C。 例5 整式去括号应为( ) A. B. C. D. 分析:易错答A、D、C。原因有:(1)没有正确理解去括号法则;(2)没有正确运用去括号的顺序是从里到外,从小括号到中括号。 例6 当取( )时,多项式中不含项 A. 0B. C. D. 分析:这道题首先要对同类项作出正确的判断,然后进行合并。合并后不含项(即缺项)的意义是项的系数为0,从而正确求解。正确答案应选C。 例7 若A与B都是二次多项式,则AB:(1)一定是二次式;(2)可能是四次式;(3)可能是一次式;(4)可能是非零常数;(5)不可能是零。上述结论中,不正确的有( ) A. 2个
13、B. 3个C. 4个D. 5个 分析:易错答A、C、D。解这道题时,尽量从每一个结论的反面入手。如果能够举出反例即可说明原结论不成立,从而得以正确的求解。 例8 在的括号内填入的代数式是( ) A. B. C. D. 分析:易错答D。添后一个括号里的代数式时,括号前添的是“”号,那么这两项都要变号,正确的是A。 例9 求加上等于的多项式是多少? 错解: 这道题解错的原因在哪里呢? 分析:错误的原因在第一步,它没有把减数()看成一个整体,而是拆开来解。 正解: 答:这个多项式是 例10 化简 错解:原式 分析:错误的原因在第一步应用乘法分配律时,这一项漏乘了3。 正解:原式 巩固练习 1. 下列
14、整式中,不是同类项的是( ) A. B. 1与2 C. 与D. 2. 下列式子中,二次三项式是( ) A. B. C. D. 3. 下列说法正确的是( ) A. 的项是B. 是多项式 C. 是三次多项式D. 都是整式 4. 合并同类项得( ) A. B. 0C. D. 5. 下列运算正确的是( ) A. B. C. D. 6. 的相反数是( ) A. B. C. D. 7. 一个多项式减去等于,求这个多项式。 参考答案 1. D2. C3. B4. A5. A6. C7. 一元一次方程部分一、解方程和方程的解的易错题:一元一次方程的解法:重点:等式的性质,同类项的概念及正确合并同类项,各种情形
15、的一元一次方程的解法;难点:准确运用等式的性质进行方程同解变形(即进行移项,去分母,去括号,系数化一等步骤的符号问题,遗漏问题);学习要点评述:对初学的同学来讲,解一元一次方程的方法很容易掌握,但此处有点类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。从而在学习时一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。易错范例分析:例1.(1)下列结论中正确的是( )A.在等式3a-6=3b+5的两边都除以3,可得等式a-2=b+5B.在等式7x=5x+3的两边都减去x-3,可以得等式6x-3=4x+6C.在等式-5=0.1x的
16、两边都除以0.1,可以得等式x=0.5D.如果-2=x,那么x=-2(2)解方程20-3x=5,移项后正确的是( )A.-3x=5+20 B.20-5=3x C.3x=5-20 D.-3x=-5-20(3)解方程-x=-30,系数化为1正确的是( )A.-x=30 B.x=-30 C.x=30 D. (4)解方程 ,下列变形较简便的是( )A.方程两边都乘以20,得4(5x-120)=140B.方程两边都除以 ,得 C.去括号,得x-24=7D.方程整理,得 解析:(1) 正确选项D。方程同解变形的理论依据一为数的运算法则,运算性质;一为等式性质(1)、(2)、(3),通常都用后者,性质中的关
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 重点 问题 解析 19
限制150内