基于单片机饮水机智能控制系统(共37页).doc
《基于单片机饮水机智能控制系统(共37页).doc》由会员分享,可在线阅读,更多相关《基于单片机饮水机智能控制系统(共37页).doc(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 机械工程学院毕业设计(论文)题 目: 基于单片机饮水机智能控制系统 专 业: 机电技术教育 班 级: 113 姓 名: 学 号: 指导教师: 日 期: 2015年6 月 目录 基于单片机饮水机智能控制系统摘要:温度控制无论是在工业生产过程中,还是在日常生活中都起着非常重要的作用。单片机在电子产品中的应用已经越来越广泛,在很多电子产品中也用到了温度检测和温度控制。本次设计的主要目的在于,设计出一个全新的智能控制系统,该系统具有温度检测、温度控制、温度报警、液面报警等功能。关键词:单片机AT89S52、DS18B20、LED数码管显示1前言1.1课题来源与背景1.1.1
2、课题来源在日常生活中和工业生产过程,温度控制都起着巨大的作用,温度过高或温度过低都会使水的资源失去它本该有的作用,因而使水资源严重的浪费。尤其在当前全球的水资源相当缺乏的情景下,更要求我们控制水温的技术更加熟练,充分利用好身边的水资源。1.1.2课题背景传统饮水机的局限性一般体现在以下几个方面:第一 ,功能相对简单,只有简单的温度控制,而使用者不能根据自己的喜好设定温度参数。第二,能耗大,在无人使用的时候饮水机也处于开机状态,这无疑会造成能源的大量浪费,在能源紧缺的今天,这个问题更有待解决。第三,长期饮用饮水机里反复烧的水不利于身体健康,由于大部分使用的饮水机烧水不能完全沸腾,长期饮用这种水会
3、对身体造成极大的伤害。1.2课题的研究意义单片机已经在电子产品中应用越来越广泛,在大多电子产品中也用到了温度检测和温度控制。因此,本次设计的主要目的在于,设计出一个全新的智能控制系统,该系统具有温度检测、温度控制、温度报警、液面报警等功能。 本次设计饮水机智能控制系统,要符合人们需求的生活用水,先要把水烧开,然后使水温保持一定的温度,同时要具备饮水机的液位报警,温度报警等功能,方便人们饮用。掌握好对饮水机的控制,就能在一定程度上把我们身边的水充分利用起来,防止了每次加热都使水沸腾,既节能又能更好的满足人们的需求。因此,设计基于单片机的温度控制器,用于控制温度。具体要求如下:1、可以通过数码管显
4、示饮水机水箱水温度数;2、可以通过键盘或开关选择制冷或加热;3、可以人为设置水温度的上下限,如加热,当温度在设定的范围内时正常工作,当低于水温下限时控制加热器加热;如制冷,当温度高于水温上限时,控制压缩机制冷;4、温度检测范围0-95,精度1;5、温度超过设定值时具有示警功能。2系统总体的设计 2.1 硬件总体的设计设计并制作一个基于单片机的热水器温度控制系统的电路,其结构框图如图2.1:图2.1 系统机构框图硬件系统子模块: 单片机最小系统电路部分 键盘扫描电路部分 LED显示电路部分及指示灯 温度采集电路部分报警部分继电器控制部分2.1.1单片机最小系统设计 单片机最小系统如图2.2所示,
5、由主控器AT89S52、时钟电路和复位电路三部分组成。单片机AT89S52作为核心控制器控制着整个系统的工作,而时钟电路负责产生单片机工作所必需的时钟信号,复位电路使得单片机能够正常、有序、稳定地工作。 图2.2 单片机最小系统1、单片机选择 AT89S521是一种低功耗、高性能CMOS 8位微控制器,具有8K 在系统可编程Flash 存储器。使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。片上Flash允许程序存储器在系统可编程,亦适于常规编程器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得AT89S52在众多嵌入式控制应用系
6、统中得到广泛应用。其管脚图如图2.3所示。图2.3 AT89S52管脚图(1)P0 口:P0口是一个8位漏极开路的双向I/O口。作为输出口,每位能驱动8个TTL逻辑电平。对P0端口写“1”时,用作高阻抗输入。 当访问外部和数据时,P0口也被作为低8位地址/数据复用。在这种模式下, P0不具有内部上拉电阻。 在flash时,P0口也用来接收指令;在校验时,输出指令字节。校验时,需要外部上拉电阻。(2)P1 口:P1 口是一个具有内部上拉电阻的8 位双向I/O 口,p1 输出缓冲器能驱动4 个 TTL 逻辑电平。此外,P1.0和P1.1分别作/2的外部计数输入(P1.0/T2)和/计数器2 的触发
7、输入(P1.1/T2EX)。 在flash和校验时,P1口接收低8位地址字节。号第二功能:P1.0 T2(/T2的外部计数输入),时钟输出P1.1 T2EX(定时器/T2的捕捉/重载触发信号和方向控制)P1.5 MOSI(在用)P1.6 MISO(用)P1.7 SCK(用)(3)P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动 AT89S52引脚图 PLCC封装4 个 TTL 逻辑电平。对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入 口使用。作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。 在访问外部或用16位地
8、址读取(例如执行MOVX DPTR) 时,P2 口送出高八位地址。在这种应用中,P2 口使用很强的内部上拉发送1。在使用 8位地址(如MOVX RI)访问存储器时,P2口输出P2的内容。 在flash编程和校验时,P2口也接收高8位地址和一些。(4)P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,p3 输出缓冲器能驱动4 个 TTL 逻辑电平。 P3口亦作为AT89S52特殊功能(第二功能)使用,如下表所示。 在flash编程和校验时,P3口也接收一些。端口第二功能:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 INTO(外中断0)P3.3 INT1(外
9、中断1)P3.4 TO(定时/0)P3.5 T1(定时/1)P3.6 WR(写选通)P3.7 RD(读选通)此外,P3口还接收一些用于和校验的。(5)RST:复位输入。当振荡器工作时,RST引脚出现两个以上高电平将使复位。(6)ALE/PROG:当访问外部或数据时,ALE(允许)输出脉冲用于锁存地址的低8位字节。一般情况下,ALE仍以时钟振荡频率的1/6输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问存储器时将跳过一个ALE脉冲。对FLASH期间,该还用于输入编程脉冲(PROG)。如有必要,可通过对(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后
10、,只有一条MOVX和MOVC指令才能将ALE激活。此外,该会被微弱拉高,执行外部时,应设置ALE禁止位无效。(7)PSEN:储存允许(PSEN)输出是外部的读选通信号,当AT89S52由外部程序存储器取指令(或数据)时,每个两次PSEN有效,即输出两个脉冲,在此期间,当访问存储器,将跳过两次PSEN信号。(8)EA/VPP:外部访问允许,欲使CPU仅访问外部(地址为0000H-FFFFH),EA端必须保持低电平(接地)。需注意的是:如果加密位LB1被,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU则执行内部程序存储器的指令。FLASH时,该加上+12V的编程允许电源Vpp,
11、当然这必须是该器件是使用12V编程电压Vpp。(9)XTAL1:振荡器反相放大器和内部时钟发生电路的输入端。(10)XTAL2:振荡器反相放大器的输出端2、时钟电路时钟电路用于产生AT89S52单片机工作时所必需的时钟信号。其电路与AT89S52的连接如图2.2所示。AT89S52单片机本身就是一个复杂的同步时序电路,为了保证同步工作方式的实现,AT89S52单片机应在唯一的时钟信号控制下,严格按时序执行指令进行工作,而时序所研究的是指令执行中各个信号的关系。在执行指令时,CPU首先要到指令存储器中取出需要执行的指令操作码,然后译码,并由时序电路产生一系列控制信号去完成指令所规定的操作。CPU
12、发出的时序信号有两种,一是用于片内对各个功能部件的控制。另一种是对片外存储器或I/O口的控制,这种时序对于分析、设计硬件接口电路至关重要。这也是单片机应用设计者最关心的问题。时钟是单片机的心脏,单片机以时钟频率为基准的前提下各个功能部件运行,工作井井有序。故而,单片机的速度直接受时钟频率的影响,单片机系统的稳定性与此同时也受时钟电路的质量的直接影响。AT89S52单片机内部有一个放大器它的作用是为了组成振荡器的反相高增益,此具有反相且高增益放大器的输入端为芯片引脚X1,输出引脚X2。这两个引脚跨接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器。虽然AT89S52有内部振荡电路,但要形成时
13、钟,必须外接组件。外接晶体以及X1和X2构成并联谐振电路。电容的大小会影响振荡器频率的高低、振荡器的稳定性、起振的快速性和温度的稳定性。除使用晶体振荡器外,如对时钟频率要求不高,还可以用陶瓷振荡器来代替。电路中的电容容值通常选择为30PF左右,本电路选择的是20PF,这并不影响系统的工作和控制的结果。晶体的振荡的频率的范围通常是在1.2MH到12MH之间。晶体的频率越高,则系统的时钟频率就越高,单片机的运行速度也就越快。但反过来运行速度越快对存储器的速度要求就越高,对印刷电路板的工艺要求也高。AT89S52单片机常选择振荡频率6MH或12MH的石英晶体,随着集成电路制造工艺技术的发展,单片机的
14、时钟频率也在逐步提高,现在的高速单片机芯片的时钟频率已经达到40MH。考虑到本设计所用的各种器件对时钟频率的要求及整体电路的简洁性,本设计选用的是振荡频率为12MH的石英晶体。3、复位电路 AT89S52的复位是由外部的复位电路来实现的。单片机复位电路设计的好坏,直接影响到整个系统工作的可靠性。许多用户在设计完单片机系统,并在实验室调试成功后,在现场却出现了“死机”、“程序走飞”等现象,这主要是单片机的复位电路设计不可靠引起的。因此选用一个适合本系统的复位电路极其重要。常用的复位电路有四种方式:(1) 上电复位电路(2)按键复位电路 (3)脉冲复位电路(4)兼有上电复位与按键复位的电路。 由于
15、考虑到结构和成本等原因,在很多设计里面,复位电路通常采用上电复位和按键复位两种。根据本系统的特性,决定选用按键复位电路。按键复位是通过外部复位电路的按键操作来实现的。当时钟频率选用12MH,电容C选用30mF,电阻R选用10KW。该复位电路工作原理为:在通电瞬间,在RC电路充电过程中,RST端出现正脉冲,保证RST引脚出现10 ms以上稳定的高电平,从而使单片机复位。2.1.2温度采集电路设计 本设计中的温度采集系统由DS18B20传感器负责。 DS18B20的管脚配置和封装结构如图2.4所示。 图2.4 DS18B20封装1、引脚定义: (1) DQ为数字信号输入/输出端; (2)GND为电
16、源地; (3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 2、DS18B20的单线(1wire bus)系统:DS18B20工作原理为DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s 减为750ms。 低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在55所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加
17、1,计数器1的预置将重新被装入,计数器1重 新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即 为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 DS18B20内部结构图如图2.5所示:图2.5 DS18B20内部结构图 2.1.3 A/D转换电路设计 A/D转换部分电路的功能主要是将采集部分采集来的模拟信号转换成数字信号,然后输送到单片机进行数据处理。主要器件有ADC0809、74LS02、74S74等。ADC0809与AT89S52连接电路如图2.6所示。图2.6 A/D转换
18、电路A/D转换器ADC0809共有八路模拟输入端,由于本设计温度采集只有两路,因此只用到两路模拟输入端,其输入通道为IN0、IN1。这两个通道的数据分别是温度采集电路的输出信号V01、V02,也就是转换为电压值的饮水机两个水箱水的温度值。选择这两个通道需要通过设置ADC0809的ADDA、B、C的值,因为它对应的是八路模拟信号,而本系统只有两路模拟信号输入,因此,只需要将低位ADDA连到AT89S52的P2.2口,并根据P2.2口的电压是低电平或高电平来选择要检测哪个通道,当ADDA值为0时选的是IN0通道,当ADDA为1时选的是IN1 通道。而ADDB、ADDC只需接地即可。1、 A/D转换
19、器选择A/D转换器的功能是将连续变化的模拟量转换成一个离散的数字量。每一个数字量都是数字代码的按位组合,每一位数字代码都是一定的“权”,对应一定大小的模拟量。为了将数字量转换成模拟量应该将其每一位都转换成相应的模拟量,然后求和即可得到与数字量成正比的模拟量。目前,市面上有很多类型的A/D转换器,如:ADC0804、ADC0809、AD574等,根据本设计控制的特点,选用ADC0809作为A/D转换器。ADC0809八位逐次逼近式A/D转换器是一种单片CMOS器件,包括8位的模/数转化器,8通道多路转换器和与微处理器兼容的控制逻辑。8通道多路转换器能直接连通8个单端模拟信号中的任何一个。片内带有
20、锁存功能的8路模拟多路开关,可以对8路05V的输入模拟电压信号分时进行转换,片内具有多路开关的地址译码和锁存电路、比较器、256RT型网络、树状电子开关、逐次逼近寄存器SAR、控制与时序电路等。输出具有TTL三态锁存缓冲器,可以直接连接到单片机数据总线上。(1) ADC0809功能如下:分辨率为8位。最大不可调误差小于1LSB。单一+5V供电,模拟输入范围05V具有锁存控制的8路模拟开关。可锁存三态输出,输出与TTL兼容。功耗为15mW。不必进行零点和满度调整。 图2.7 ADC0809引脚图转换速度取决于芯片的时钟频率。时钟频率范围:101280KHZ,当CLK=500kHZ时,转换速度为1
21、28mS。(2) ADC0809管脚及功能:A/D转换器ADC0809的引脚图如图2.7所示。IN0IN7:8路输入通道的模拟量输入端口。2-12-8:8位数字量输出端口。START,ALE:START为启动控制输入端口,ALE为锁存控制信号端口。这两个信号端可连接在一起,当通过软件输入一个正脉冲,便立即启动模/数转换。EOC,OE:EOC为转换结束信号脉冲输出端口,OE为输出允许控制端口。这两个信号也可连接在一起表示模/数转换结束。OE端的电平由低变高,打开三态输出锁存器,将转换结果的数字量输出到数据总线上。REF(+),REF(-),Vcc,GND:REF(+)和REF(-)为参考电压输入
22、端,Vcc为主电源输入端,GND为接地端。一般REF(+)与Vcc连接在一起,REF(-)与GND连接在一起。CLK:时钟输入端口。ADDA,B,C:8路模拟开关的三位地址选通输入端,以选择对应的输入通道。其地址码与对应信道关系如表2.1所示。表2.1 地址码与输入信道对应关系表地址码对应的输入通道CBA000IN0001IN1010IN2011IN3100IN4101IN4110IN6111IN7强调说明一点:ADC0809虽然有八路模拟通道可以同时输入八路模拟信号,但每一个瞬间只能转换一路模拟信号,各路之间的切换由软件变换通道地址实现。A/D转换器采用的转换方法主要有逐次逼近型A/D转换、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 单片机 饮水机 智能 控制系统 37
限制150内