初中数学竞赛辅导资料5(共4页).doc
《初中数学竞赛辅导资料5(共4页).doc》由会员分享,可在线阅读,更多相关《初中数学竞赛辅导资料5(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初中数学竞赛辅导资料(25) 十进制的记数法甲内容提要1. 十进制的记数法就是用0,1,29十个数码记数的方法,位率是逢十进一。底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位数第1位), 101=10(十位上的数-第2位),102=100(百位上的数-第3位),10n(第n+1位上的数) 例如54307记作5104+4103+3102+0101+71002. 十进制的n位数(n为正整数), 记作:10n-1a1+10n-2a2+10n-3+102an-2+10an-1+an 其中最高位a10,即0a19,其它是0a1,a2,a3an93. 各位上的
2、数字相同的正整数记法:例如999=100011031,99991041,10n-1,4 解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据各位上的数字都是表示0到9的整数,这一性质进行讨论。乙例题例1. 一个六位数的最高位是1,若把1移作个位数,其余各数的大小和顺序都不变,则所得的新六位数恰好是原数的3倍,求原六位数。解:设原六位数1右边的五位数为x,那么原六位数可记作1105x ,新六位数为10x1,根据题意,得10x13(1105x)7x= x=42857 原六位数是例2. 设n为正整数,计算1解:原数(10n 1)(10n 1)+110n+10n1102n210n+1
3、+10n+10n1102n例3. 试证明12,1122,这些数都是两个相邻的正整数的积证明:1234,11223334,333334注意到333334333(3331)(1)由经验归纳法,得10n+()(上述结论证明了各数都是两个相邻的正整数的积例4. 试证明:任何一个四位正整数,如果四个数字和是9的倍数,那么这个四位数必能被9整除。并把它推广到n位正整数,也有同样的结论。证明:设一个四位数为103a+102b+10c+d, 根据题意得a+b+c+d=9k (k为正整数),d=9ka bc,代入原四位数,得103a+102b+10c9ka bc(1031)a+(102-1)b+9c+9k =9
4、(111a+11b+c+k) 111a+11b+c+k是整数,四位数103a+102b+10c+d,能9被整除推广到n位正整数:n位正整数记作10n1a1+10n-2a2+10an-1+an(1)a1+a2+an-1+an=9k(k是正整数)an=9ka1a2an-1代入(1)得原数10n1a1+10n-2a2+10an-1+9ka1a2an-1(10n-11)a1+(10n-21)a2+9an-1+9k10n-11,10n-21,101分别表示,9原数9(a1a2an+k)这个n位正整数必能被9整除例5. 已知:有一个三位数除以11,其商是这个三位数的三个数字和。求:这个三位数。解:设这个三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 竞赛 辅导资料
限制150内