2018高考数学专题05-函数的对称性、周期性及其应用-备战2018年高考数学之高三复习大一轮热点聚焦与扩展(共20页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2018高考数学专题05-函数的对称性、周期性及其应用-备战2018年高考数学之高三复习大一轮热点聚焦与扩展(共20页).doc》由会员分享,可在线阅读,更多相关《2018高考数学专题05-函数的对称性、周期性及其应用-备战2018年高考数学之高三复习大一轮热点聚焦与扩展(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上专题05 函数的对称性、周期性及其应用【热点聚焦与扩展】高考对函数性质的考查往往是综合性的,如将奇偶性、周期性、单调性及函数的零点综合考查,因此,复习过程中应注意在掌握常见函数图象和性质的基础上,注重函数性质的综合应用的演练.(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)关于轴对称(当时,恰好就是偶函数)(2)关于轴对称 在已知对称轴的情况下,构造形如的等式只需注意两点,一是等式两侧前面的符号相同,且括号内前面的符号相反;二是的取值保证为所给对称轴即可。例如:关于轴对称,或得
2、到均可,只是在求函数值方面,一侧是更为方便(3)是偶函数,则,进而可得到:关于轴对称. 要注意偶函数是指自变量取相反数,函数值相等,所以在中,仅是括号中的一部分,偶函数只是指其中的取相反数时,函数值相等,即,要与以下的命题区分:若是偶函数,则:是偶函数中的占据整个括号,所以是指括号内取相反数,则函数值相等,所以有 本结论也可通过图像变换来理解,是偶函数,则关于轴对称,而可视为平移了个单位(方向由的符号决定),所以关于对称.2、中心对称的等价描述:(1)关于中心对称(当时,恰好就是奇函数)(2)关于中心对称 在已知对称中心的情况下,构造形如的等式同样需注意两点,一是等式两侧和前面的符号均相反;二
3、是的取值保证为所给对称中心即可。例如:关于中心对称,或得到均可,同样在求函数值方面,一侧是更为方便(3)是奇函数,则,进而可得到:关于中心对称。 要注意奇函数是指自变量取相反数,函数值相反,所以在中,仅是括号中的一部分,奇函数只是指其中的取相反数时,函数值相反,即,要与以下的命题区分:若是奇函数,则:是奇函数中的占据整个括号,所以是指括号内取相反数,则函数值相反,所以有 本结论也可通过图像变换来理解,是奇函数,则关于中心对称,而可视为平移了个单位(方向由的符号决定),所以关于对称。4、对称性的作用:最突出的作用为“知一半而得全部”,即一旦函数具备对称性,则只需要分析一侧的性质,便可得到整个函数
4、的性质,主要体现在以下几点:(1)可利用对称性求得某些点的函数值(2)在作图时可作出一侧图像,再利用对称性得到另一半图像(3)极值点关于对称轴(对称中心)对称 (4)在轴对称函数中,关于对称轴对称的两个单调区间单调性相反;在中心对称函数中,关于对称中心对称的两个单调区间单调性相同(二)函数的周期性1、定义:设的定义域为,若对,存在一个非零常数,有,则称函数是一个周期函数,称为的一个周期2、周期性的理解:可理解为间隔为的自变量函数值相等3、若是一个周期函数,则,那么,即也是的一个周期,进而可得:也是的一个周期4、最小正周期:正由第3条所说,也是的一个周期,所以在某些周期函数中,往往寻找周期中最小
5、的正数,即称为最小正周期。然而并非所有的周期函数都有最小正周期,比如常值函数5、函数周期性的判定:(1):可得为周期函数,其周期(2)的周期分析:直接从等式入手无法得周期性,考虑等间距再构造一个等式:所以有:,即周期注:遇到此类问题,如果一个等式难以推断周期,那么可考虑等间距再列一个等式,进而通过两个等式看能否得出周期(3)的周期分析:(4)(为常数)的周期分析:,两式相减可得:(5)(为常数)的周期(6)双对称出周期:若一个函数存在两个对称关系,则是一个周期函数,具体情况如下:(假设) 若的图像关于轴对称,则是周期函数,周期分析:关于轴对称 关于轴对称 的周期为 若的图像关于中心对称,则是周
6、期函数,周期 若的图像关于轴对称,且关于中心对称,则是周期函数,周期7、函数周期性的作用:简而言之“窥一斑而知全豹”,只要了解一个周期的性质,则得到整个函数的性质。(1)函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值(2)图像:只要做出一个周期的函数图象,其余部分的图像可利用周期性进行“复制+粘贴”(3)单调区间:由于间隔的函数图象相同,所以若在上单调增(减),则在上单调增(减)(4)对称性:如果一个周期为的函数存在一条对称轴 (或对称中心),则 存在无数条对称轴,其通式为 证明:关于轴对称 函数的周期为 关于轴对称注:其中(3)(4)在三角函数中应用广泛,可作为检验答案的方法
7、.【经典例题】例1【2017山东,文14】已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当 时,则f(919)= .【答案】【解析】【名师点睛】与函数奇偶性有关问题的解决方法已知函数的奇偶性,求函数值将待求值利用奇偶性转化为已知区间上的函数值求解已知函数的奇偶性求解析式将待求区间上的自变量,转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f(x)的方程(组),从而得到f(x)的解析式已知函数的奇偶性,求函数解析式中参数的值常常利用待定系数法:利用f(x)f(x)0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程求解应用奇偶性画图象和判断单调性利用奇偶性可
8、画出另一对称区间上的图象及判断另一区间上的单调性例2.对于函数,部分与的对应关系如表:数列满足: ,且对于任意,点都在函数的图象上,则的值为_.【答案】7564【名师点睛】周期数列是周期现象的应用,周期数列问题在高考中常出现这类试题综合性强一般会融汇数列,数论,函数等知识解题,方法灵活多变,具有较高的技巧性学生应进行相关的培训,才能在应付这些试题时有比较好的把握例3.【2018届山西省康杰中学高三上学期第一次月考】定义在R上的函数满足,且时, ,则=A. 1 B. C. D. 【答案】C【解析】,则时, ,即故选C.例4.定义在上的函数对任意,都有,则等于( )A. B. C. D. 【答案】
9、D【解析】由及所求可联想到周期性,所以考虑,所以是周期为4的周期函数,故,而由已知可得,所以.例5【高考题】定义在上的函数满足,则的值为( )A. B. C. D. 【答案】C,而.【名师点睛】(1)本题的思路依然是将无解析式的自变量通过函数性质向含解析式的自变量靠拢,而数较大,所以考虑判断函数周期性。(2)如何快速将较大自变量缩至已知范围中?可利用带余除法除以周期,观察余数。则被除数的函数值与余数的函数值相同,而商即为被除数利用周期缩了多少次达到余数。例如本题中,从而(3)本题推导过程中也有其用处,其含义是间隔为3的自变量函数值互为相反数,相比周期,它的间隔更小,所以适用于利用周期缩小自变量
10、范围后,进行“微调”从而将自变量放置已知区间内.例6.已知是定义在上的函数,满足,当时,则函数的最小值为( )A. B. C. D. 【答案】B例7.已知定义域为的函数满足,且函数在区间上单调递增,如果,且,则的值( )A. 可正可负 B. 恒大于0 C. 可能为0 D. 恒小于0【答案】D【解析】思路一:题目中给了单调区间,与自变量不等关系,所求为函数值的关系,从而想到单调性,而可得,因为,所以,进而将装入了中,所以由可得,下一步需要转化,由可得关于中心对称,所以有.代入 可得,从而思路二:本题运用数形结合更便于求解.先从分析出关于中心对称,令代入到可得。中心对称的函数对称区间单调性相同,从
11、而可作出草图.而,即的中点位于的左侧,所以比距离更远,结合图象便可分析出恒小于0.【名师点睛】(1)本题是单调性与对称性的一个结合,入手点在于发现条件的自变量关系,与所求函数值关系,而连接它们大小关系的“桥梁”是函数的单调性,所以需要将自变量装入同一单调区间内。而对称性起到一个将函数值等价转化的作用,进而与所求产生联系.(2)数形结合的关键点有三个:第一个是中心对称图像的特点,不仅仅是单调性相同,而且是呈“对称”的关系,从而在图像上才能看出的符号;第二个是,进而可知;第三个是,既然是数形结合,则题中条件也要尽可能转为图像特点,而表现出中点的位置,从而能够判断出距离中心对称点的远近.例8.已知定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高考 数学 专题 05 函数 对称性 周期性 及其 应用 备战 年高 复习 一轮 热点 聚焦 扩展 20
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-15139093.html
限制150内