高中数学新课标典型例题-简单线性规划(共16页).doc
《高中数学新课标典型例题-简单线性规划(共16页).doc》由会员分享,可在线阅读,更多相关《高中数学新课标典型例题-简单线性规划(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上典型例题一例1画出不等式组表示的平面区域分析:采用“图解法”确定不等式组每一不等式所表示的平面区域,然后求其公共部分解:把,代入中得 不等式表示直线下方的区域(包括边界),即位于原点的一侧,同理可画出其他两部分,不等式组所表示的区域如图所示说明:“图解法”是判别二元一次不等式所表示的区域行之有效的一种方法典型例题二例2 画出表示的区域,并求所有的正整数解分析:原不等式等价于而求正整数解则意味着,还有限制条件,即求解:依照二元一次不等式表示的平面区域,知表示的区域如下图:对于的正整数解,先画出不等式组所表示的平面区域,如图所示容易求得,在其区域内的整数解为、说明:这类题
2、可以将平面直角坐标系用网络线画出来,然后在不等式组所表示的平面区域内找出符合题设要求的整数点来典型例题三例3 求不等式组所表示的平面区域的面积分析:本题的关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论解:不等式可化为或;不等式可化为或在平面直角坐标系内作出四条射线, ,则不等式组所表示的平面区域如图 由于与、与互相垂直,所以平面区域是一个矩形根据两条平行线之间的距离公式可得矩形的两条边的长度分别为和所以其面积为典型例题四例1若、满足条件求的最大值和最小值分析:画出可行域,
3、平移直线找最优解解:作出约束条件所表示的平面区域,即可行域,如图所示作直线,即,它表示斜率为,纵截距为的平行直线系,当它在可行域内滑动时,由图可知,直线过点时,取得最大值,当过点时,取得最小值 说明:解决线性规划问题,首先应明确可行域,再将线性目标函数作平移取得最值典型例题五例5 用不等式表示以,为顶点的三角形内部的平面区域分析:首先要将三点中的任意两点所确定的直线方程写出来,然后结合图形考虑三角形内部区域应怎样表示。解:直线的斜率为:,其方程为可求得直线的方程为直线的方程为的内部在不等式所表示平面区域内,同时在不等式所表示的平面区域内,同时又在不等式所表示的平面区域内(如图)所以已知三角形内
4、部的平面区域可由不等式组表示说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线典型例题六例6 已知,求的最大、最小值分析:令,目标函数是非线性的而可看做区域内的点到原点距离的平方问题转化为点到直线的距离问题解:由得可行域(如图所示)为,而到,的距离分别为和所以的最大、最小值分别是50和说明:题目中的目标函数是非线性的解决的方法类似于线性规划问题可做出图,利用图进行直观的分析典型例题七例7 设式中的变量、满足下列条件求的最大值分析:先作出不等式组所表示的可行域,需要注意的是这里的,故只是可行域内的整数点,然后作出与直线平等的直线再进行观察解:作出直线和直线,得可行域如图所示
5、解方程组得交点又作直线,平等移动过点时,取最大值,然而点不是整数点,故对应的值不是最优解,此时过点的直线为,应考虑可行域中距离直线最近的整点,即,有,应注意不是找距点最近的整点,如点为可行域中距最近的整点,但,它小于,故的最大值为34说明:解决这类题的关键是在可行域内找准整点若将线性目标函数改为非线性目标函数呢?典型例题八例8 设,式中的变量、满足试求的最大值、最小值分析:作出不等式组所表示的平面区域,本题的关键是目标函数应理解为可行域中的点与坐标原点的距离的平方解:作出直线,得到如图所示的可行域由得由得由得由图可知:当为点时,取最小值为2;当为点时,取最大值29说明:若将该题中的目标函数改为
6、,如何来求的最大值、最小值呢?请自己探求(将目标函数理解为点与点边线的斜率)典型例题九例9 设,;,用图表示出点的范围分析:题目中的,与,是线性关系可借助于,的范围确定的范围解:由得由,得做出不等式所示平面区域如图所示说明:题目的条件隐蔽,应考虑到已有的,的取值范围借助于三元一次方程组分别求出,从而求出,所满足的不等式组找出的范围典型例题十例10某糖果厂生产、两种糖果,种糖果每箱获利润40元,种糖果每箱获利润50元,其生产过程分为混合、烹调、包装三道工序,下表为每箱糖果生产过程中所需平均时间(单位:分钟)混合烹调包装153241每种糖果的生产过程中,混合的设备至多能用12机器小时,烹调的设备至
7、多只能用机器30机器小时,包装的设备只能用机器15机器小时,试用每种糖果各生产多少箱可获得最大利润分析:找约束条件,建立目标函数解:设生产种糖果箱,种糖果箱,可获得利润元,则此问题的数学模式在约束条件下,求目标函数的最大值,作出可行域,其边界 由得,它表示斜率为,截距为的平行直线系,越大,越大,从而可知过点时截距最大,取得了最大值解方程组 即生产种糖果120箱,生产种糖果300箱,可得最大利润19800元说明:由于生产种糖果120箱,生产种糖果300箱,就使得两种糖果共计使用的混合时间为1202300720(分),烹调时间512043001800(分),包装时间3120300660(分),这说
8、明该计划已完全利用了混合设备与烹调设备的可用时间,但对包装设备却有240分钟的包装时间未加利用,这种“过剩”问题构成了该问题的“松驰”部分,有待于改进研究典型例题十一例11甲、乙、丙三种食物的维生素、含量及成本如下表:甲乙丙维生素(单位/千克)600700400维生素(单位/千克)800400500成本(元/千克)1194某食物营养研究所想用千克甲种食物,千克乙种食物,千克丙种食物配成100千克的混合食物,并使混合食物至少含56000单位维生素和63000单位维生素(1)用、表示混合物成本(2)确定、的值,使成本最低分析:找到线性约束条件及目标函数,用平行线移动法求最优解解:(1)依题意:、满
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 新课 典型 例题 简单 线性规划 16
限制150内