《相交线与平行线全章导学案(共24页).doc》由会员分享,可在线阅读,更多相关《相交线与平行线全章导学案(共24页).doc(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课题:5.1.1 相交线学习目标:1、了解两条直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质。 2、理解对顶角性质的推导过程,并会用这个性质进行简单的计算。 3、通过辨别对顶角与邻补角,培养识图的能力。学习重点:邻补角和对顶角的概念及对顶角相等的性质。学习难点:在较复杂的图形中准确辨认对顶角和邻补角。学具准备:剪刀、量角器学习过程:一、 学前准备1、 预习疑难: 。2、 填空:两个角的和是 ,这样的两个角叫做互为补角,即其中一个角是另一 个角的补角。同角或 的补角 。二、 探索与思考(一) 邻补角、对顶角1、观察思考:剪刀剪开纸张的过程,随着两个把手之间的角
2、逐渐变小,剪刀刃之间的角度也相应 。我们把剪刀的构成抽象为两条直线,就是我们要研究的两条相交直线所成的角的问题。2、探索活动:任意画两条相交直线,在形成的四个角(1,2,3,4)中,两两相配共能组成 对角。分别是 。分别测量一下各个角的度数,是否发现规律?你能否把他们分类?完成教材中2页表格。 再画两条相交直线比较。 图13、 归纳:邻补角、对顶角定义 邻补角。两条直线相交所构成的四个角中,有公共顶点 的两个角是 对顶角。4、 总结:两条直线相交所构成的四个角中,邻补角有 对。对顶角有 对。对顶角形成的前提条件是两条直线相交。5、对应练习:下列各图中,哪个图有对顶角? B B B A C D
3、C D C D A A B B B(A) C D C A C D A D(二) 邻补角、对顶角的性质1、邻补角的性质:邻补角 。注意:邻补角是互补的一种特殊的情况,数量上 ,位置上有一条 。2、对顶角的性质:完成推理过程如图,1+2 = ,2+3 = 。(邻补角定义)1=180 ,3 =180 (等式性质)1=3 (等量代换)或者1与2互补,3与2互补(邻补角定义),l3(同角的补角相等)由上面推理可知,对顶角的性质:对顶角 。三、 应用(一)例 如图,已知直线a、b相交。140,求2、3、4的度数解:3140( )。2180118040140( )。42140( )。你还有别的思路吗?试着写
4、出来(二) 练一练:教材3页练习(在书上完成)四、 自我检测:(一)选择题: 1.如图所示,1和2是对顶角的图形有( )毛 A.1个 B.2个 C.3个 D.4个 2.如图1所示,三条直线AB,CD,EF相交于一点O,则AOE+DOB+COF等于( )A.150 B.180 C.210 D.120 (1) (2) (3) (4) (5) 3.下列说法正确的有( ) 对顶角相等;相等的角是对顶角;若两个角不相等,则这两个角一定不是对顶角;若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个 4.如图2所示,直线AB和CD相交于点O,若AOD与BOC的和为236,则AOC
5、的度数为( ) A.62 B.118 C.72 D.59(二)填空题:1. 如图3所示,AB与CD相交所成的四个角中,1的邻补角是_,1的对顶角_ _.2.如图3所示,若1=25,则2=_,3=_,4=_.3.如图4所示,直线AB,CD,EF相交于点O,则AOD的对顶角是_,AOC的邻补角是_;若AOC=50,则BOD=_,COB=_.4.如图5所示,直线AB,CD相交于点O,若1-2=70,则BOD=_,2=_.5、已知1与2是对顶角,1与3互为补角,则2+3= 。 课题:5.1.2 垂线学习目标:1 理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2 掌握点到直线的距离的
6、概念,并会度量点到直线的距离。3 掌握垂线的性质,并会利用所学知识进行简单的推理。学习重点:垂线的定义及性质。学习难点:垂线的画法学具准备:相交线模型,三角尺,量角器学习过程:一、学前准备1、预习疑难: 。2、填空:如果与互为余角,37,那么 。已知1与2互为余角,1与3互为余角,那么2与3的关系是 。二、探索与思考(一)垂线的定义1、观察思考:转动相交线模型,观察两条直线所成的夹角的变化。当夹角变化到 时,就是我们今天要研究的两条直线垂直。2、定义:两条直线相交所成的四个角中,有一个角是 时,这两条直线就互相垂直。其中一条直线叫做另一条直线的 ,它们的交点叫做 。3、符号表示:如果直线AB、
7、CD互相垂直,记作ABCD,垂足为O。由两条直线垂直,可知四个角为直角。记为ABCD(已知)AOD90(垂直定义) 由两条直线交角为直角,可知两条直线互相垂直。记为AOD90(已知)ABCD(垂直定义)4、总结:垂直是相交。是相交的一种特殊情况。垂直是一种相互关系,即ab,同时ba当提到线段与线段,线段与射线,射线与射线,射线与直线的垂直情况时,是指它们所在的直线互相垂直。5、生活中的垂直关系:日常生活中,两条直线互相垂直很常见,你能举出几个例子吗?(二)垂线的性质一1、 垂线的画法有两种:利用 或者 。2、 探究:完成教材4页探究问题。3、垂线性质: 。4、对应练习:教材5页练习1、2(在书
8、上完成)(三) 垂线的性质二1、思考:在灌溉时,要把河中的水引到农田P处,如何挖渠能使渠道最短?2、探究:上面思考问题可以转化为数学问题:“已知直线l和直线外一点P,连接点P到直线l上各点O,A1,A2,A3,其中 POl(我们称PO为点P到直线l的垂线段)。 请你比较线段PO,PA1,PA2,PA3的长短,哪一条最短?结论: 。简记为: 。A B3、 对应练习:修一条公路将村庄A、B与公路MN连接起来,怎样修NM才能使所修的公路最短?画出线路图,并说明理由。 教材6页 练习 (四) 点到直线的距离:1、定义:直线外一点到这条直线的 ,叫做点到直线的距离。2、注意:定义中说的是“垂线段的长度”
9、,而不是“垂线段”。因为,距离是一个数量,而“垂线段”是指一个具体的几何图形。3、对应练习:如图,BCA90,CDAB,垂足为D,则下列结论中正确的个数为( ) AC与BC互相垂直;CD与BC互相垂直;点B到AC的垂线段是线段AC;点C到AB的距离是线段CD;线段AC的长度是点A到BC的距离;线段AC是点A到BC的距离。A.2 B.3 C.4 D.5三、自我检测:(一) 选择题:1.如图1所示,下列说法不正确的是( )毛 A.点B到AC的垂线段是线段AB; B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段; D.线段BD是点B到AD的垂线段 (1) (2) 2.如图1所示,能表
10、示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条 3.下列说法正确的有( ) 在平面内,过直线上一点有且只有一条直线垂直于已知直线; 在平面内,过直线外一点有且只有一条直线垂直于已知直线; 在平面内,过一点可以任意画一条直线垂直于已知直线; 在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,ADBD,BCCD,AB=a cm, BC=b cm,则BD的范围是( ) A.大于a cm B.小于b cm C.大于a cm或小于b cm D.大于b cm且小于a cm5.到直线L的距离等于2cm的点有( ) A.0个 B.
11、1个; C.无数个 D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm(二)填空题: 1、如图4所示,直线AB与直线CD的位置关系是_,记作_,此时,AOD=_=_=_=90.2、如图5,ACBC,C为垂足,CDAB,D为垂足,BC=8,CD=4.8,BD=6.4,AD=3.6,AC= 6,那么点C到AB的距离是_,点A到BC的距离是_,点B到CD 的距离是_,A、B两点的距离是_.DB (4) (5) (6) (7) (8)3、如图6,在线段AB、A
12、C、AD、AE、AF中AD最短.小明说垂线段最短, 因此线段AD的长是点A到BF的距离,对小明的说法,你认为_.4、如图7,AOBO,O为垂足,直线CD过点O,且BOD=2AOC,则BOD=_.5、如图8,直线AB、CD相交于点O,若EOD=40,BOC=130,那么射线OE 与直线AB的位置关系是_.五、拓展延伸1、已知,如图,AOD为钝角,OCOA,OBOD求证:AOBCOD证明:OCOA,OBOD( ) AOB1 ,COD+1=90(垂直的定义) AOB=COD( )变式训练:如图OCOA,OBOD,O为垂足,若BOC=35,则AOD=_.2、已知:如图,直线AB,射线OC交于点O,OD
13、平分BOC,OE平分AOC.试判断OD 与OE的位置关系.3、课本中水渠该怎么挖?在图上画出来.如果图中比例尺为1:, 水渠大约要挖多长? 4、如图,分别画出点A、B、C到BC、AC、AB的垂线段,再量出A到BC、点B到AC、 点C到AB的距离.5、如图,直线AB,CD相交于O,OECD,OFAB,DOF65,求BOE和AOC的度数。课题:5.1.3同位角、内错角、同旁内角学习目标:1、理解同位角、内错角、同旁内角的意义。2、会熟练地识别图中的同位角、内错角、同旁内角。3、培养学生分析、抽象、归纳能力,培养学生的识图能力学习重点:同位角、内错角、同旁内角的识别。学习难点:较复杂图形中同位角、内
14、错角、同旁内角的识别。学习过程:一、学前准备1、预习疑难: 。2、直线AB、CD相交于O小于平角的角有几个?有几对对顶角?有几对邻补角?二、探索与思考如图,直线AB、CD与EF相交(或两条直线AB、CD被第三条直线EF所截)构成 个角。我们来研究其中没有公共顶点的两个角的关系。(一)同位角1、定义:如图1,1和5,分别在直线AB、CD的 , 在直线EF的 。具有这种位置关系的一对角 叫做同位角。2、请你找出图中还有哪几对角构成同位角。3、两条直线被第三条直线所截构成的八个角中,共有 对同位角。(二)内错角 (1)EF1、定义:如图2,3和5,分别在直线AB、CD的 , 在直线EF的 。具有这种
15、位置关系的一对角 叫做内错角。2、请你找出图中还有哪几对角构成内错角。3、两条直线被第三条直线所截构成的八个角中,共有 对内错角(三)同旁内角1、定义:如图2,3和6,分别在直线AB、CD的 , 在直线EF的 。具有这种位置关系的一对角 叫做同旁内角。 (2)2、请你找出图中还有哪几对角构成同旁内角。3、两条直线被第三条直线所截构成的八个角中,共有 对同旁内角(四)总结:(1)以上三对角都有一边公共,是第三条直线(截线) (2)识别“第三条直线(两个角一边所在的同一直线)”是关键三、应用(一)例 如图,直线DE、BC被直线AB所截,(1)l与2,1与3,1与4各是什么关系的角?(2)如果14,
16、那么1和2相等吗?1和3互补吗?为什么?(二)变式训练:找出图中所有的同位角、内错角、同旁内角。(三) 归纳:四、学习体会:1、本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了吗?五、自我检测:BACDEF12341说出下列各对角是哪两条直线被哪一条直线所截而得到的什么角?ABCD129101113ABCD5768 (1)1与2,1与3,3与4,2与4 (2)5与8,5与7,6与7,6与8 (3)9与10,11与12,9与11,10与12,B与132、如图(3),直线 、 被 所截,1与2是内错角,直线 、 被 所截,1与B是同位角;直线 、 被 所截,3和B是同位角。BCFED12
17、3A图(3)ABCEF1345623、如右图所示:(1)1,2,3,4,5,6是直线 、 被第三条直线 所截而成的。(2)2的同位角是 ,1的同位角是 。(3)3的内错角是 ,4的内错角是 。(4)6的同旁内角是 ,5的同旁内角是 ,(5)4与A是同旁内角吗?为什么?课题:5.2.1平行线学习目标:1理解平行线的意义,了解同一平面内两条直线的两种位置关系;2理解并掌握平行公理及其推论的内容;3会根据几何语句画图,会用直尺和三角板画平行线;4了解在实践中总结出来的基本事实的作用和意义,并初步感受公理化思想。学习重点:探索和掌握平行公理及其推论.学习难点:对平行线本质属性的理解,用几何语言描述图形
18、的性质学具准备:分别将木条a、b与木条c钉在一起,做成学具,直尺,三角板学习过程:一、学前准备1、预习疑难: 。2、两条直线相交有 个交点。平面内两条直线的位置关系除相交外,还有哪些呢?二、探索与思考(一)平行线1、观察思考:展示学具,在转动a的过程中,有没有直线a与直线b 不相交的位置呢?2、定义及表示方法:在同一平面内, 是平行线。 直线a与b平行,记作 。3、对平行线概念的理解:定义中强调“在同一平面内”,为什么要强调这句话。在同一平面内,两条直线有几种位置关系? 在空间中,是否存在既不平行又不相交的两条直线? (提示:用长方体来说明 ) 4、总结:同一平面内两条直线的位置关系有两种:(
19、1) (2) 。请你举出一些生活中平行线的例子。(二)画平行线1、 工具:直尺、三角板2、 方法:一“落”;二“靠”;三“移”;四“画”。3、请你根据此方法练习画平行线:已知:直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?(三)平行公理及推论1、思考:上图中,过点B画直线a的平行线,能画 条; 过点C画直线a的平行线,能画 条; 你画的直线有什么位置关系? 。2、平行公理公理内容: 。比较平行公理和垂线的第一条性质:共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“
20、一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.3、推论: 。符号语言:ba,ca(已知)bc(如果两条直线都与第三条直线平行,那么这两条直线也互相平行)探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?三、练一练:教材13页练习(在书上完成)四、学习体会:1、本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了吗?五、自我检测:(一)选择题:1下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一
21、条直线与已知直线垂直其中正确的个数是( )A1 B2 C3 D42、下列推理正确的是 ( ) A、因为a/d, b/c,所以c/d B、因为a/c, b/d,所以c/d C、因为a/b, a/c,所以b/c D、因为a/b, d/c,所以a/c3.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( ) A.0个 B.1个 C.2个 D.3个4.下列说法正确的有( ) 不相交的两条直线是平行线;在同一平面内,两条直线的位置关系有两种; 若线段AB与CD没有交点,则ABCD;若ab,bc,则a与c不相交. A.1个 B.2个 C.3个 D.4个(二)填空题:1.在同一平面
22、内,两条直线的位置关系有_ _.2.在同一平面内,一条直线和两条平行线中的一条直线相交,那么这条直线与平行线中的另一条必_.3.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为_ _. 4.两条直线相交,交点的个数是_,两条直线平行,交点的个数是_个.5、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。6、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:(1)L1与L2 没有公共点,则 L1与L2 ;(2)L1与L2有且只有一个公共点,则L1与L2 ;(3)L1与L2有两个公共点,则L1与L2 。7、在同一平面内,一个角
23、的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。A B F C D8、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。9、如图所示,ABCD(已知),经过点F可画EFABEFCD( )六、拓展延伸1.根据下列要求画图.(1)如图(1)所示,过点A画MNBC;(2)如图(2)所示,过点P画PEOA,交OB于点E,过点P画PHOB,交OA于点H;(3)如图(3)所示,过点C画CEDA,与AB交于点E,过点C画CFDB,与AB延长线交于点F.(4)如图(4)所示,过点M,N分别画直线AB的平行线, 判断所画的两条直线的位置关系. (1) (2) (3) (4) 2、如图所示,哪
24、些线段是互相平行的?并用“/”表示出来。3、如图,长方体ABCD-EFGH,(1)图中与棱AB平行的棱有哪些?(2)图中与棱AD平行的棱有哪些?(3)连接AC、EG,问AC、EG是否平行。课题:5.2.2平行线的判定学习目标:1、使学生掌握平行线的四种判定方法,并初步运用它们进行简单的推理论证。 2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。学习重点:在观察实验的基础上进行公理的概括与定理的推导学习难点:定理形成过程中的逻辑推理及其书面表达。学具准备:三角板学习过程:一、学前准备1、预习疑难: 。2、填空:经过直线外一点,_ _与这条直线平行.二、探索与思考(一)平行线
25、判定方法1:1、观察思考:过点P画直线CDAB的过程,三角尺起了什么作用? 图中,1和2什么关系?2、判定方法1: 应用格式: 。 12(已知)简单说成: 。 ABCD(同位角相等,两直线平行)3、 应用:木工师傅使用角尺画平行线,有什么道理? (二) 平行线判定方法2、3:1、 思考:教材14页(试着写出推理过程)判定方法2: 应用格式: 。 23(已知)简单说成: 。 ab(内错角相等,两直线平行)2、将上题中条件改变为24180,能得到ab吗?(试着写出推理过程)判定方法3: 应用格式: 。 24180(已知)简单说成: 。 ab(同旁内角互补,两直线平行)(三)数学思想:教材15页探究
26、。三、应用(一)例 教材15页(二)练一练:教材15页练习1、2、3(三)总结直线平行的条件 (1) (2)方法1:若ab,bc,则ac。即两条直线都与第三条直线平行,这两条直线也互相平行。方法2:如图1,若13,则ac。即 。方法3:如图1,若 。方法4:如图1,若 。方法5:如图2,若ab,ac,则bc。即在同一平面内,垂直于同一条直线的两条直线互相平行。四、学习体会:1、本节课你有哪些收获?你还有哪些疑惑?2、预习时的疑难解决了吗?五、自我检测:(一)选择题:1.如图1所示,下列条件中,能判断ABCD的是( )毛A.BAD=BCD B.1=2; C.3=4 D.BAC=ACD (1) (
27、2) (3) (4)2.如图2所示,如果D=EFC,那么( ) A.ADBC B.EFBC C.ABDC D.ADEF3.下列说法错误的是( ) A.同位角不一定相等 B.内错角都相等 C.同旁内角可能相等 D.同旁内角互补,两直线平行4.(2000.江苏)如图5,直线a,b被直线c所截,现给出下列四个条件:1=5;1=7;2+3=180;4=7.其中能说明ab的条件序号为( ) (5) A. B. C. D.(二)填空题:1.如图3,如果3=7,或_ _,那么_,理由是_ _;如果5=3,或_ _,那么_, 理由是_ _; 如果2+ 5= _ 或者_ _,那么ab,理由是_ _.2.如图4,
28、若2=6,则_,如果3+4+5+6=180, 那么_,如果9=_,那么ADBC;如果9=_,那么ABCD.3.在同一平面内,若直线a,b,c满足ab,ac,则b与c的位置关系是_.4.如图所示,BE是AB的延长线,量得CBE=A=C. (1)由CBE=A可以判断_,根据是_.(2)由CBE=C可以判断_,根据是_.六、拓展延伸1、如图,已知,试问EF是否平行GH,并说明理由。 课题:5.3.1平行线的性质学习目标:1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算2.通过本节课的教学,培养学生的概括能力和“观察猜想证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力3.培养学
29、生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性学习重点:平行线性质的研究和发现过程是本节课的重点学习难点:正确区分平行线的性质和判定是本节课的难点学习过程:一、学前准备1、预习疑难: 。2、平行线判定: 。二、探索与思考(一)平行线性质1、观察思考:教材19页思考2、探索活动:完成教材19页探究3、归纳性质: 同位角 。两条平行线被第三条直线所截, 。 。 ab(已知) 同位角 。 15(两直线平行,同位角相等) ab(已知)简单说成:两直线平行 。 35( ) ab(已知) 。 36180( )(二)证明性质的正确性:1、性质1性质2:如右图,ab(已知)12( )又31(对顶角相等)。23(等量代换)。2、性质1性质3:如右图,ab(已知)12( )又 ( )。 。(三)两条平行线的距离:1、如图,已知直线ABCD,E是直线CD上任意一点,过E向直线AB作垂线,垂足为F,这样做出的垂线段EF的长度是平行线的距离。2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变3、对应练习:如右图,已知:直线mn,A、B为 C D mO 直线n上的两点,C、D为直线m上 的两点。
限制150内