统计建模与R软件课后答案(共43页).docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《统计建模与R软件课后答案(共43页).docx》由会员分享,可在线阅读,更多相关《统计建模与R软件课后答案(共43页).docx(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第二章2.1 x-c(1,2,3);y e z z1 z2 A-matrix(1:20,nrow=4);B C D E F G x H for (i in 1:5)+ for(j in 1:5)+ Hi,j det(H)(2) solve(H)(3) eigen(H) 2.5 studentdata write.table(studentdata,file=student.txt) write.csv(studentdata,file=student.csv)2.7count-function(n)if (n=0)print(要求输入一个正整数)elserepeati
2、f (n%2=0)n-n/2elsen data_outline(x)3.2 hist(x,freq=F) lines(density(x),col=red) y lines(y,dnorm(y,73.668,3.9389),col=blue) plot(ecdf(x),verticals=T,do.p=F) lines(y,pnorm(y,73.668,3.9389) qqnorm(x) qqline(x)3.3 stem(x) boxplot(x) fivenum(x)3.4 shapiro.test(x) ks.test(x,pnorm,73.668,3.9389) One-sample
3、 Kolmogorov-Smirnov testdata: xD = 0.073, p-value = 0.6611alternative hypothesis: two-sidedWarning message:In ks.test(x, pnorm, 73.668, 3.9389) : ties should not be present for the Kolmogorov-Smirnov test这里出现警告信息是因为ks检验要求样本数据是连续的,不允许出现重复值3.5x1-c(2,4,3,2,4,7,7,2,2,5,4);x2-c(5,6,8,5,10,7,12,12,6,6);x3
4、 boxplot(x1,x2,x3,names=c(x1,x2,x3),vcol=c(2,3,4)windows()plot(factor(c(rep(1,length(x1),rep(2,length(x2),rep(3,length(x3),c(x1,x2,x3)3.6 rubber plot(rubber)具体有相关关系的两个变量的散点图要么是从左下角到右上角(正相关),要么是从左上角到右下角(负相关)。从上图可知所有的图中偶读没有这样的趋势,故均不相关。3.7(1) student attach(student) plot(体重身高)(2) coplot(体重身高|性别)(3) cop
5、lot(体重身高|年龄)(4) coplot(体重身高|年龄+性别)只列出(4)的结果,如下图3.8 x-seq(-2,3,0.5);y f zcontour(x,y,z,levels=c(0,1,2,3,4,5,10,15,20,30,40,50,60,80,100),col=blue) windows() persp(x,y,z,theta=30,phi=30,expand=0.7,col=red)3.9 cor.test(身高,体重)根据得出的结果看是相关的。具体结果不再列出3.10 df stars(df)然后按照G的标准来画出星图 attach(df) df$G1 df$G2 df$
6、G3 df$G4 df$G5 a stars(a)这里从17开始取,是因为在df中将ID也作为了一列3.11使用P159已经编好的函数unison,接着上题,直接有 unison(a)第四章4.1(1)先求矩估计。总体的期望为。因此我们有。可解得a=(2*E(x)-1)/(1-E(x).因此我们用样本的均值来估计a即可。在R中实现如下 x (2*mean(x)-1)/(1-mean(x)1 0.(2)采用极大似然估计首先求出极大似然函数为La;x=i=1na+1xia=(a+1)ni=1nxia再取对数为lnLa;x=nlna+1+aln(i=1nxi最后求导lnL(a;x)a=na+1+ln
7、i=1nxi好了下面开始用R编程求解,注意此题中n=6.方法一、使用unniroot函数 f uniroot(f,c(0,1)方法二、使用optimize函数 g optimize(g,c(0,1),maximum=T)4.2用极大似然估计得出=n/i=1nxi.现用R求解如下x 1000/sum(x)4.3换句话讲,就是用该样本来估计泊松分布中的参数,然后求出该分布的均值。我们知道泊松分布中的参数,既是均值又是方差。因此我们只需要用样本均值作矩估计即可在R中实现如下 x mean(x)1 14.4 f-function(x) +obj nlm(f,c(0.5,-2)4.5在矩估计中,正态分布
8、总体的均值用样本的均值估计。故在R中实现如下 x mean(x)1 67.4然后用t.test作区间估计,如下 t.test(x) t.test(x,alternative=less) t.test(x,alternative=greater)此时我们只需要区间估计的结果,所以我们只看t.test中的关于置信区间的输出即可。t.test同时也给出均值检验的结果,但是默认mu=0并不是我们想要的。下面我们来做是否低于72的均值假设检验。如下 t.test(x,alternative=greater,mu=72) One Sample t-testdata: xt = -2.4534, df =
9、9, p-value = 0.9817alternative hypothesis: true mean is greater than 7295 percent confidence interval: 63.96295 Infsample estimates:mean of x 67.4结果说明:我们的备择假设是比72要大,但是p值为0.9817,所以我们不接受备择假设,接受原假设比72小。因此这10名患者的平均脉搏次数比正常人要小。4.6我们可以用两种方式来做一做 x y t.test(x,y,var.equal=T) t.test(x-y)结果不再列出,但是可以发现用均值差估计和配对数
10、据估计的结果的数值有一点小小的差别。但得出的结论是不影响的(他们的期望差别很大)4.7 A B t.test(A,B)4.8 x y var.test(x,y) t.test(x,y,var.equal=F)4.9泊松分布的参数就等于它的均值也等于方差。我们直接用样本均值来估计参数即可,然后作样本均值0.95的置信区间即可。 x mean(x)1 1. t.test(x)4.10正态总体均值用样本均值来估计。故如下 x t.test(x,alternative=greater)注意greater才是求区间下限的(都比它大的意思嘛)第五章5.1这是一个假设检验问题,即检验油漆作业工人的血小板的均
11、值是否为225.在R中实现如下 x t.test(x,mu=225)5.2考察正态密度函数的概率在R中的计算。首先我们要把该正态分布的均值和方差给估计出来,这个就利用样本即可。然后用pnorm函数来计算大于1000的概率。如下 x pnorm(1000,mean(x),sd(x)1 0. 1-0.1 0.5.3这是检验两个总体是否存在差异的问题。可用符号检验和wilcoxon秩检验。两种方法实现如下 x y binom.test(sum(x wilcox.test(x,y,exact=F)p-value = 0.792可见无论哪种方法P值都大于0.05,故接受原假设,他们无差异5.4(1)采用
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统计 建模 软件 课后 答案 43
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内