千题百炼——高考数学100个热点问题(一):第25炼-定积分-Word版含解析(共7页).doc
《千题百炼——高考数学100个热点问题(一):第25炼-定积分-Word版含解析(共7页).doc》由会员分享,可在线阅读,更多相关《千题百炼——高考数学100个热点问题(一):第25炼-定积分-Word版含解析(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第25炼 定积分一、基础知识1、相关术语:对于定积分(1)称为积分上下限,其中(2):称为被积函数(3):称为微分符号,当被积函数含参数时,微分符号可以体现函数的自变量是哪个,例如:中的被积函数为,而的被积函数为2、定积分的几何意义:表示函数与轴,围成的面积(轴上方部分为正,轴下方部分为负)和,所以只有当图像在完全位于轴上方时,才表示面积。可表示数与轴,围成的面积的总和,但是在求定积分时,需要拆掉绝对值分段求解3、定积分的求法:高中阶段求定积分的方法通常有2种:(1)微积分基本定理:如果是区间上的连续函数,并且,那么使用微积分基本定理,关键是能够找到以为导函数的原函数
2、。所以常见的初等函数的导函数公式要熟记于心: 寻找原函数通常可以“先猜再调”,先根据导函数的形式猜出原函数的类型,再调整系数,例如:,则判断属于幂函数类型,原函数应含,但,而,所以原函数为(为常数) 如果只是求原函数,则要在表达式后面加上常数,例如,则,但在使用微积分基本定理时,会发现计算时会消去,所以求定积分时,不需加上常数。(2)利用定积分的几何含义:若被积函数找不到原函数,但定积分所对应的曲边梯形面积易于求解,则可通过求曲边梯形的面积求定积分。但要注意曲边梯形若位于轴的下方,则面积与所求定积分互为相反数。4、定积分的运算性质:假设存在(1)作用:求定积分时可将的系数放在定积分外面,不参与
3、定积分的求解,从而简化的复杂程度(2)作用:可将被积函数拆成一个个初等函数的和,从而便于寻找原函数并求出定积分,例如(3),其中作用:当被积函数含绝对值,或者是分段函数时,可利用此公式将所求定积分按区间进行拆分,分别求解。5、若具备奇偶性,且积分限关于原点对称,则可利用奇偶性简化定积分的计算(1)若为奇函数,则(2)若为偶函数,则6、利用定积分求曲面梯形面积的步骤:(1)通过作图确定所求面积的区域(2)确定围成区域中上,下曲线对应的函数(3)若时,始终有,则该处面积为7、有的曲面梯形面积需用多个定积分的和进行表示。需分段通常有两种情况(1)构成曲面梯形的函数发生变化(2)构成曲面梯形的函数上下
4、位置发生变化,若要面积与定积分的值一致,则被积函数要写成“上方曲线的函数下方曲线函数”的形式。所以即使构成曲面梯形的函数不变,但上下位置发生过变化,则也需将两部分分开来写。二、典型例题:例1:已知函数,则( )A. B. C. D. 思路:在的解析式不同,所以求定积分时要“依不同而分段”:,而,对于无法找到原函数,从而考虑其几何意义:,为单位圆面积的,即,所以答案:B小炼有话说:(1)若被积函数在不同区间解析式不同时,则要考虑将定积分按不同区间进行拆分(2)若被积函数具备“”特征,在无法直接找到原函数时,可考虑其图像的几何意义,运用面积求得定积分,但是要注意判定与定积分符号是否与面积相同例2:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 千题百炼 高考 数学 100 热点问题 25 积分 Word 解析
限制150内