2017八年级数学矩形教案(共6页).doc
《2017八年级数学矩形教案(共6页).doc》由会员分享,可在线阅读,更多相关《2017八年级数学矩形教案(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上192.1 矩形(1)第一课时 教学目标 知识与技能: 了解矩形的有关概念,理解并掌握矩形的有关性质 过程与方法: 经过探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法 情感态度与价值观: 培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值 重难点、关键 重点:掌握矩形的性质,并学会应用 难点:理解矩形的特殊性 关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形 教学准备 教师准备:投影仪,收集有关矩形的图片,制作教具(图192-2) 学生准备:复习平行四边形性质,预习矩形这节内容 学法解析 1认知起点:已
2、经学习了三角形、平行四边形,积累了一定的经验的基础上学习本节课内容 2知识线索:情境与操作平行四边形矩形矩形性质 3学习方式:观察、操作、感知其演变,以合作交流的学习方式突破难点 教学过程 一、联系生活,形象感知 【显示投影片】 教师活动:将收集来的有关长方形图片,播放出来,让学生进行感性认识,然后定义出矩形的概念 矩形定义:有一个角是直角的平行四边形叫做矩形(也就是小学学习过的长方形) 教师活动:介绍完矩形概念后,为了加深理解也为了继续研究矩形的性质,拿出教具同学生一起探究下面问题: 问题1:改变平行四边形活动框架,将框架夹角变为90,平行四边形成为一个矩形,这说明平行四边形与矩形具有怎样的
3、从属关系?(教师提问) 学生活动:观察教师的教具,研究其变化情况,可以发现:矩形是平行四边形的特例,是属于平行四边形,因此它具有平行四边形所有性质 问题2:既然它具有平行四边形的所有性质,那么矩形是否具有它独特的性质呢?(教师提问) 学生活动:由平行四边形对边平行以及刚才变角为90可以得到的补角也是90,从而得到矩形四个角都是直角 评析:实际上,在小学学生已经学过长方形四个角都是90,这里学生不难理解 教师活动:用橡皮筋做出两条对角线,让学生观察这两条对角线的关系,并要求学生证明(口述)学生活动:观察发现:矩形的两条对角线相等,口述证明过程是:充分利用(SAS)三角形全等来证明 口述:四边形A
4、BCD是矩形 ABC=DCB=90,AB=DC 又BC为公共边 ABCDCB(SAS) AC=BD 教师提问:AO=_AC,BO=_BD呢?(,)BO是RtABC的什么线?由此你可以得到什么结论? 学生活动:观察、思考后发现AO=AC,BO=BD,BO是RtABC的中线由此归纳直角三角形的一个性质: 直角三角形斜边上的中线等于斜边的一半 直角三角形中,30角所对的边等于斜边的一半(师生回忆) 【设计意图】采用观察、操作、交流、演绎的手法来解决重点突破难点 二、范例点击,应用所学例1 如图,矩形ABCD的两条对角线相交于O,AOB=60,AB=4cm,求矩形对角线的长(投影显示) 思路点拨:利用
5、矩形对角线相等且平分得到OA=OB,由于AOB=60,因此,可以发现AOB为等边三角形,这样可求出OA=AB=4cm,AC=BD=2OA=8cm 【活动方略】 教师活动:板书例1,分析例1的思路,教会学生解题分析法,然后板书解题过程(课本P104) 学生活动:参与教师讲例,总结几何分析思路 【问题探究】(投影显示)如图,ABC中,A=2B,CD是ABC的高,E是AB的中点,求证:DE=AC思路点拨:本题可从E是AB的中点切入,考虑应用三角形中位线定理应用三角形中位线必需找到另一个中点分析可知:可以取BC中点F,也可以取AC的中点G为尝试 【活动方略】 教师活动:操作投影仪,引导、启发学生的分析
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 八年 级数 矩形 教案
限制150内