二次函数与一元二次方程和一元二次不等式.doc
《二次函数与一元二次方程和一元二次不等式.doc》由会员分享,可在线阅读,更多相关《二次函数与一元二次方程和一元二次不等式.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数与一元二次方程和一元二次不等式二次函数是初中函数的主要内容,也是高中学习的重要基础在初中阶段大家已经知道:二次函数在自变量取任意实数时的最值情况(当时,函数在处取得最小值,无最大值;当时,函数在处取得最大值,无最小值方程与函数不仅是初中数学中的重要内容,也是高中数学学习的重要内容,方程与函数之间存在着密切的联系,二次函数的图象与x轴交点的横坐标即为相应的二次方程的解,课程标准要求我们能利用二次函数的图象求二次方程的近似解。本节我们将进一步研究一元二次方程与函数问题,研究当自变量在某个范围内取值时,函数的最值问题同时还将学习二次函数的最值问题在实际生活中的简单应
2、用【例1】已知二次函数的部分图象如图所示,则关于的一元二次方程的解为 分析:因为二次方程的根为二次函数的图象与x轴交点横坐标。根据已知条件 ,可知抛物线的对称轴为直线;根据图象可知抛物线与x轴的一个交点的横坐标为,所以利用抛物线的对称性知抛物线与x轴的另一个交点横坐标为1,因此,方程的解为3和1。本题利用抛物线的轴对称性求抛物线与轴的交点坐标,从而求出相应的一元二次方程的根。【例2】 二次函数是常数中,自变量与函数的对应值如下表:12311(1)判断二次函数图象的开口方向,并写出它的顶点坐标(2)一元二次方程是常数的两个根的取值范围是下列选项中的哪一个 分析:本题以表格的形式给出二次函数的部分
3、对应值,解题时可以选定三对值,求出二次函数解析式,再判断开口方向,求出顶点坐标。但这样去做计算量较大,观察表格的特征发现,与等距离的x对应的函数值相等,所以直线是抛物线的对称轴,因此抛物线的顶点坐标为(1,2);观察表格发现:当时,y随着x的增大而减小,当时,y随着x的增大而增大,所以抛物线的开口向下。(2)一元二次方程是常数的根即为抛物线与x轴交点的横坐标,观察表格发现:与0之间一定有一个x的值,使0;2与之间一定有一个x的值,使0,所以的两根的取值范围是,故答案为【例3】已知函数的图象如图所示,那么关于的方程的根的情况是( )A无实数根B有两个相等实数根C有两个异号实数根D有两个同号不等实
4、数根分析:本题以图象的形式给出信息,要判断关于的方程的根的情况,因为可化为,即,所以,方程的根即为抛物线与直线y2的交点横坐标,作直线y2,观察图象可知直线与抛物线的交点在第四象限,因此交点横坐标都为正,故答案为D。本题把方程的根转化为抛物线与直线的交点横坐标。【例4】二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根(2)写出不等式的解集(3)写出随的增大而减小的自变量的取值范围(4)若方程有两个不相等的实数根,求的取值范围分析:本题以图象的形式给出信息,考查了二次函数、二次方程、二次不等式这三个二次之间的关系。(1)方程的根即抛物线与x轴交点的横坐标,观察图象得方程的两根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 一元 二次方程 不等式
限制150内