必修五--不等式的知识点归纳和习题训练.doc
《必修五--不等式的知识点归纳和习题训练.doc》由会员分享,可在线阅读,更多相关《必修五--不等式的知识点归纳和习题训练.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上必修五:不等式知识点一:不等式关系与不等式一、不等式的主要性质:(1) 对称性: (2) 传递性:(3) 加法法则:; (4) 乘法法则:; (5)倒数法则:(6)乘方法则:(7)开方法则:【典型例题】1.已知a,b为非零实数,且ab,则下列命题成立的是()Aa2b2 Ba2bab2 C2a2b2.如果,则下列不等式中正确的是( )A B C D3. 已知a,b,c,d均为实数,有下列命题:(1)若ab0,bcad0,则0;(2)若ab0,0,则bcad0; (3)若bcad0,0,则ab0,其中正确命题的个数是()A0 B1 C2 D34. 设a、b、c、dR,且a
2、b,cd,则下列结论中正确的是()A. acbd Bacbd Cacbd D.【习题训练】1:已知,且、不为,那么下列不等式成立的是( )A B C D2:下列命题中正确的是( )A若,则 B若,则C若,则 D若,则3. 下列命题中正确命题的个数是( )若,则;,则;若,则;若,则AB CD4. 如果,且,那么,的大小关系是( )ABC D5. 用“”“”号填空:如果,那么_6. 已知,均为实数,且,则下列不等式中成立的是( )A BC D7. 已知实数和均为非负数,下面表达正确的是( )A且 B或C或 D且8已知,则2a+3b的取值范围是( )A B C D 二、含有绝对值的不等式1绝对值的
3、几何意义:是指数轴上点到原点的距离;是指数轴上两点间的距离 2、 3当时,或,; 当时,4、解含有绝对值不等式的主要方法:解含绝对值的不等式的基本思想是去掉绝对值符号,将其等价转化为一元一次(二次)不等式(组)进行求解;去掉绝对值的主要方法有:(1)公式法:,或(2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方【典型例题】1. 给出下列命题:;其中正确的命题是( )AB CD 2. 设a,bR,若a|b|0,则下列不等式中正确的是()Aba0 Ba3b30 Ca2b203.不等式的解集为( )(运用公式法)A B C D 4. 求解不等式:(运用零点分段发)5.函数的
4、最小值为( ) (零点分段法) A B C D【习题训练】1. 解不等式2. 若不等式对恒成立,则实数的取值范围为_。三、其他常见不等式形式总结:分式不等式的解法:先移项通分标准化,则 指数不等式:转化为代数不等式 对数不等式:转化为代数不等式例1 .不等式的解集是_.例2. 解不等式例3. 解关于x的不等式例4. 不等式的解集是( ) 四、三角不等式: 五、不等式证明的几种常用方法 比较法(做差法、做商法)、综合法、分析法、换元法、反证法、放缩法。【典型例题】1.若,则( )A B C D2.若或,则与的大小关系是( )ABCD3. 若,则, , , 按由小到大的顺序排列为 4. 若a,b,
5、c则a,b,c按从小到大排列应是_5. 设a2,b2,c52,则a、b、c之间的大小关系为_6. 下列各式中,对任何实数都成立的一个式子是( )A B C D7. 若、是任意实数,且,则( )AB C D8. 已知,求证:【习题训练】1. 不等式,恒成立的个数是( )ABCD2. 已知,那么,的大小关系是( )ABCD3. 若,则,的大小关系是( )ABCD随值的变化而变化4. 已知、,且,比较与的大小六、数轴穿跟法: 奇穿,偶不穿例题:不等式的解为( )A1x1或x2Bx3或1x2 Cx=4或3x1或x2Dx=4或x0,b0,则不等式的解集是( )A. B. C. D.4. 关于实数x的方程
6、有两个正根,则实数m的取值范围是 .5. 已知不等式的解集为.(1)求a,b; (2)解不等式.【习题训练】1.解下列不等式(1)(x1)(3x)52x; (2)x(x11)3(x1)2 (3)(2x1)(x3)3(x22) 2不等式(x+2)(1x)0的解集是( )A或x1 BxC21 D3设f(x)=x2+bx+1,且f(1)=f(3),则f(x)0的解集是( )A BRC1 D14.已知集合,则集合等于( )A. B. C. D. 5若不等式ax+x+a0的解集为 ,则实数a的取值范围( )A a-或a B a C -a D a 6:设m,解关于x的不等式.7.若,则不等式的解是( )
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 不等式 知识点 归纳 习题 训练
限制150内