基础有机化学知识整理.doc
《基础有机化学知识整理.doc》由会员分享,可在线阅读,更多相关《基础有机化学知识整理.doc(40页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上基础有机化学知识整理(1) 烷烃 卤代自由基取代反应 链引发: 链转移: 链终止: 反应控制:(2) 热裂解自由基反应 2. 硝化、磺化(自由基)与卤代类似。3. 小环开环(1) 引发的开环:自由基机理,区域选择性小。(2) 、HI引发的开环:离子机理,倾向于生成稳定的碳正离子。 (仲碳正离子比伯碳正离子稳定)在断键时,一般断极性最大的键(如取代最多的C原子和取代最少的C原子之间的键)。二、 亲核取代1. 共轭效应和诱导效应:要区别对待。 Cl原子的吸电子诱导效应使双键整体电子云密度降低,表现在反应性降低;给电子共轭效应使双键电子云向迁移,相对带部分负电荷。判断基团共
2、轭效应的性质:(1) 吸电子基团中直接相连的原子电负性较小且与电负性较大的原子相连,电子云密度低;直接相连的原子多没有孤对电子。如:,等。(2) 给电子基团中直接相连的原子电负性较大且与电负性较小的原子相连,电子云密度大;直接相连的原子均有孤对电子。如:,等。(3) 苯环的共轭效应:相当于一个电子“仓库”,与电子云密度小的原子相连时给电子,与电子云密度大的原子相连时吸电子(如苯酚显酸性)。在共轭体系中,判断双键的极性时仅考虑共轭效应。2. 反应: (构型完全翻转)成环:五、六元环易;三元环较易;四元环难。反应控制:(1) 烷基空间位阻。(2) 离去机团能力。(3) 试剂亲核性:a. 偶极溶剂:
3、与碱性一致;b. 质子溶剂:与可极化性一致。立体选择性:构型翻转。 两位负离子:用亲核性强部位进攻。3. 反应:形成为慢的一步,与亲核试剂结合为快的一步。反应控制:(1) 烷基推电子效应;(2) 大基团空助效应(利于形成);(3) 离去基团的能力;(4) 质子溶剂对反应有利。溶剂解多为,当基团不易离去或溶剂分子亲核性强时也可能有。两位负离子:用负电荷集中部位进攻。三、 消除1. E2:碱进攻H原子,带质子离去;离去。立体选择性:反式共平面,取稳定构象消除。区域选择性:Zaitsev规则:生成取代较多的烯烃。这是一个热力学控制,取代多的烯烃较稳定。动力学控制是反Zaitsev规则的,因为生成取代
4、少的烯烃时,碱进攻的位阻较小。碱体积大、强度大有利于反Zaitsev消除。2. E1cb:反式共平面,Zn带走形成,生成,构型不变。试剂:Zn,Mg,。四、 卤代烃1. 亲核取代:,ROH,(或) (鉴别,作溶剂)2. 消除:生成烯烃。连二卤代烃在消除时存在炔烃和共轭二烯烃的选择,用产物稳定性判断优势产物。如: ,构型转化3. 还原: (较温和)Zn/HCl;HI; 。保持双键构型4. 卤仿分解:与进行自由基加成后脱HOCl: 5. 与金属反应生成有机金属化合物。6. Wurtz反应:在Na作用下,在Zn作用下,二卤代烃发生偶联:当W=时,为特例(E1cb)。五、 有机金属化合物1. 与活泼H
5、反应,生成烷烃(酸碱反应)。 作用:引入同位素(与反应)。2. 与反应制羧酸: 3. 制备:自由基反应。4. 亲核取代(与制醇,与RX制烃)5. 亲核加成(与制醇,与RCN制亚胺)六、 烯烃1. 烯烃的稳定性 比稳定,因为两个甲基的超共轭效应大于一个乙基,双键较为牢固;和都比稳定,因为异丁烯的两个甲基间斥力大,且不能很好地与双键共轭。比稳定的原因:环内双键可通过半椅式构象获得合适的键角:;而环外双键不能。2. 亲电加成:双键上有推电子基团对反应有利。l 与加成:环正离子中间体机理:反式加成,负电荷部分从背面。加成大多也通过环正离子。 环烯烃的构象最小改变原理: 进攻时,六元环的构象尽量不改变。
6、即2,4,6要共面,2应向4,6所在的上方翻转,且Br占据直立键,故从1处进攻。3. 与 加成: 离子对中间体机理(顺式加成):碳正离子机理:形成后不形成环正离子,从两面进攻。原因:Cl原子体积小,不易重叠形成环正离子;p轨道与苯环共轭而稳定。4. 与HX加成:进攻形成;从两面进攻。5. Markovnikov规则:用稳定性判断区域选择性。(电子,共轭)重排:烷基重排:+与对调 ;负氢重排:+移位。环烯烃加成的立体选择性:环难以翻转,故为反式加成。6. 与、有机酸、醇酚加成:遵循马氏规则。7. 与HOX加成:形成环正离子,从反面进攻。区域选择性:由于也可通过碳正离子机理反应,应从多角度解释。8
7、. 自由基加成:过氧化物均裂产生自由基,进攻烯烃。(生成稳定的自由基)由于先上Br,故为反马氏加成。 试剂:HBr;多卤代烷(断最弱的键)。9. 氧化反应(1) 与过酸环氧化:过酸羰基质子化,形成,对双键进行亲电加成,断键。过酸碳上吸电子基团利于形成;双键C上推电子基团增大电子云密度,均利于反应。立体选择性:顺式加成。(2) 被冷稀中性或氧化成顺邻二醇(环状中间体)。(3) 臭氧化分解还原:10. 硼氢化:生成烷基硼,与的结合,反马氏的顺式加成。与水化的不同:水化用进攻;硼氢化用B进攻(另一边上H)。氧化成醇。 羧酸还原成烷烃(相当于顺式加)。11. 催化加氢:用Ni(多相)、(均相)、(必须
8、是顺式)进行顺式加成。 催化剂活性:PtPdNi。12. 与卡宾加成 卡宾用多卤代烷消除制备。 顺式加成形成三元环。能发生CH的插入反应。 卡宾的稳定性:凡是共轭给电子的基团均能与单线态卡宾的空p轨道共轭,使卡宾稳定。()13. H卤化(自由基取代)位与双键共轭,自由基稳定。可能有重排:()14. 1,4-加成: 电荷可通过共轭体系传到另一端(距离越远越好,因为可尽量保持共轭体系)。15. DielsAlder反应:属周环反应。双烯体1,4-位有位阻不利;2,3-位不影响。必须为顺式构象。有推电子基团的双烯体和有吸电子基的亲双烯体有利(记典型物质)加成后取代基处于邻、对位产物占优势。七、 炔烃
9、1. 末端炔烃的性质:与Na反应生成炔钠;与Ag反应生成沉淀(鉴别)与次卤酸反应得到炔基卤化物,是一个取代反应,但很难发生:(弱酸制强酸)与醛酮反应生成炔醇(亲核加成)。2. 还原反应(1) Pd、Pt或Ni:生成烷烃。(2) Lindlar催化剂(Pd/PbO,)、硼氢化还原得Z型烯烃。(3) Na/(l)、/还原得E型烯烃。3. 亲电加成(1) 与卤素加成:难于双键,故双键与叁键不共轭时,优先加成双键;若双键与叁键共轭,加成叁键得稳定的共轭二烯烃。遵循马氏规则(2) 与HX加成 与水加成(有烯醇式/酮式互变)4. 自由基加成:反马氏规则需分步判断: ()5. 亲核加成:sp轨道s成分多,离
10、核近,亲核试剂易加成。(1)(2) 与等活性H加成。(3) 区域选择性:用碳负离子的稳定性判断。6. 氧化反应(1) 用或氧化: (2) 硼氢化/氧化反马加,互变得醛。7. 聚合反应(1) 乙炔用催化,发生自身亲核加成: (2) 三聚成苯8. 制备:(1) 由连二卤代烷两次消除制备。(2) 三键位移:由于酸性:,故KOH/ROH使炔键向链中位移,使三键向末端位移。(强碱制弱碱)(3) 炔钠/含三键的格氏试剂可以和卤代烃,制备高级炔烃。(4) 炔烃氧化偶联、炔化亚铜偶联:(相当于复分解出)机理:自由基机理,二炔烃为链终止产物。八、 醇1. 酸性:与Na反应生成醇钠。2. 与含氧无机酸(或其酰氯、
11、酸酐)反应,生成酯,醇出羟基。3. 亲核取代反应(1) 与HX反应生成RX:酸性条件下形成盐,再脱水成,与结合。()a. Lucas试剂:浓HCl/:三级醇、烯丙醇、苄醇最易,一级醇最难。b. 与一级醇按:作离去基团。c. 按反应有重排产物(与Wagner-Meerwein重排类似)。碳正离子重排的需求:用生成的碳正离子的稳定性判断。若为协同过程,离去基团与迁移基团需处于反式。d. 邻基参与效应:形成后,相邻C上的Br等与之形成环正离子,故苏型得到全保持与全翻转产物;赤型虽也有全保持与全翻转,但在两个R基相同的情况下,这两种方式是等价的:形成环正离子的条件:有孤对电子与成键;变形性好。不能用于
12、形成环正离子,但碳正离子在重排时,形成了环状过渡态。(2) 与卤化磷反应。与反应: (相当于与1分子ROH、1分子发生“水解”)4. 氧化反应(1) ,加热,将一、二级醇氧化为羧酸或酮;可只氧化而不氧化双键;氧化为。(2) 或:保护不饱和键;氧化为(若要得到,需将醛蒸出)(3) 用氧化:一级醇氧化为酸,环醇氧化为二元酸。(4) Oppenauer氧化法:(置换反应,浓度控制方向) (5) 用Pfitzner-Moffatt试剂氧化:醇氧化为醛相当于,用 提供O原子,用作脱水剂,促使反应进行。(6) 用脱H生成醛酮。5. 邻二醇氧化:用或氧化,C-C断裂,生成相应醛酮。由于生成环状酯中间体,故顺
13、型速率快。具有 结构,可先加1mol 再反应。可看作C-C断裂,各与一个结合,然后失水。6. 频哪醇重排: (1) 离去的区域选择性:用稳定性判断。(2) 转移基团的顺序:用该基团与连接后稳定性判断。(3) 迁移基团与离去基团位于反式时重排速率快: 离去时,轨道为竖直轴向,故处于反式的迁移时,电子云能较好地重叠。的甲基与环碳原子军与离去基团为邻交叉位,反应机会接近,故反应慢且可能发生缩环:7. 制备(1) 甲醇:用CO与催化生产。(2) 制备无水醇:加入Mg,与水反应生成(3) 羰基合成:(4) 格氏试剂与环氧乙烷反应:进行,选择位阻小的C原子。(5) 格氏试剂与醛、酮反应:对羰基亲核加成。(
14、6) 格氏试剂与羧酸衍生物反应:加成后脱去1mol ROH,再进行一次加成,最终醇上有2个格氏试剂的R基。九、 醚1. 自动氧化:(断C上的C-H键)相当于用对进行自由基加成。2. 与HI反应:质子化后,亲核变得容易,为离去基团。3. 环氧乙烷衍生物的开环(1) 酸性开环():区域选择性主要考虑电子效应,的性质与双键类似,与相连的C带。(2) 碱性开环:进攻位阻小的C原子。4. 制备:(1) Williamson合成法:用RONa和RX反应得醚。形成环醚为分子内,需要和处于反式位置。合成芳醚时,因苯酚钠能在水中存在,故无需像合成脂肪醚一样在无水环境中进行。(2) 醇分子间失水:三级醇分子间难失
15、水,却很易与一级醇失水。十、 芳香烃1. 苯甲位活泼H反应:氧化成羟基;卤代;与碱反应。菲、蒽9,10- 位较活泼。2. 加成反应: 3. 还原反应(1) Birch还原: 给电子基团形成1,4双烯,吸电子基团形成2,5-双烯。原因是苯环中与吸电子基团直接相连的C原子电子云密度相对较大,易结合;与给电子基团直接相连的C原子电子云密度相对较小,不易结合。从产物稳定性判断,给电子基增大双键电子云密度,故位于双键C上;吸电子基降低双键电子云密度,故不再双键C上。 与苯环共轭的双键比苯环优先被还原。(2) 催化氢化:生成环己烷。(3) Na/ROH还原萘: (1,4- 加成)4. 氧化反应(从(1)至
16、(3)条件逐渐强烈)(1) 对醌型氧化(典型试剂:):(萘环比萘环上侧链易氧化)(2) 羧基型氧化(典型试剂:): (有2个不等长侧链,长的先氧化)(活化基团利于切断同环,钝化基团利于切断异环)(3) 型氧化:生成二甲酸酐结构 (相当于先成邻二酸再在干燥环境下脱水成酐)5. 芳香亲电取代反应(1) 基本过程: 可以是、等(2) 取代基的定位效应:本质上是用中间体共振极限式的稳定性进行判断,形式上也可用电子效应、正负交替来解释: (可理解为形成了中间体) 活化基团与钝化基团:用总的电子效应判断,给电子基团使苯环电子云密度增大,利于亲电取代反应进行。基团定位效应:只考虑取代基的共轭效应,给电子为邻
17、对位定位基,吸电子为间位定位基。基团上带+/-电荷对定位效应有很大影响,如为强间位定位基;为强邻对位定位基。邻位效应:某些分子由于邻位取代时形成分子内氢键,利于邻位产物:(3) 在Lewis/质子酸作用下发生硝化()、磺化()、卤化()、傅-克烷基化(,碳正离子有重排,是可逆反应)、傅-克酰基化(,不可逆)。 钝化基团对傅-克反应影响大,活性低于卤苯不能反应。(4) 氯甲基化反应:相当于对HCHO亲核加成,生成苄醇的羟基被HCl中的Cl取代:(5) Gatterman-Koch反应:相当于CO与HCl生成,再与进行傅-克酰基化反应:(6) 多元取代规律:两个取代基中间不易进入新基团;以最强活化
18、基团的定位为准。在合成中常用磺化及逆反应保护对位。(7) 萘的取代:动力学控制在位(相当于苯甲位,活性高);热力学控制在位(位能低)。活化基团同环;钝化基团异环。菲、蒽9,10- 位活性高,但常有加成副反应。(8) F-C烷基化:RFRClRBrRI; F-C酰基化:RCOI RCOBr RCOCl RCOF烷基化为协同过程,卤代烃分子中C的正电荷越多,越利于亲电形成络合物;络合物形成后才出现碳正离子,发生重排。酰基化先生成酰基正离子再亲电,酰基正离子的生成难易与碳卤键的键能有关。6. Haworth法合成稠环: 再次反应可得到菲。不连续进行两次酰基化的原因:空间结构使络合物不易形成;羰基吸电
19、子,不利于酰基正离子的形成。十一、 亲核加成1. 一般过程(1) 酸性:羰基质子化,形成,与亲核试剂结合。(2) 碱性:亲核试剂直接进攻原子,形成的与质子结合。2. 反应控制:醛比酮易反应(只要羰基有一边位阻小即可进攻) 环酮位阻小,易反应;小环比大环张力大,易反应。3. Cram规则:(1) 大基团与R呈重叠型(使L与羰基相距最远),亲核试剂从小基团(S)一侧进攻。(2) 当羰基上有、时,由于氢键与羰基取重叠型构象,亲核试剂从小基团一侧进攻。4. 可用来与羰基加成的试剂:(1) 有机金属化合物(2) HCN(酸或碱催化)Strecker反应:用、NaCN进行加成,得氨基腈:(二次加成与缩醛类
20、似)(3) 炔化物(4) 或,产物失水为亚胺。若有,则与脱水生成烯胺:(5) 氨衍生物:,等。 与羟胺生成肟,与亚硝基化合物为互变异构。(与烯醇式互变类似)肟有Z、E构型,E型稳定。Beckmann重排:离去,与处于反位的基团迁移到N上,生成酰胺:(顺位酸连反位胺)(6) ,生成水合物。 位阻大,羰基亲电性小,水合物不稳定。(7) 醇:加成生成半缩醛、缩醛。判断缩醛的原物质:与2个O连的为羰基C,与1个O连的为醇C。半缩醛不稳定,缩醛对碱稳定。 利用缩醛酮可保护羰基或羟基。(8) :用S加成,生成,S化合价升高。(9) RSH:生成的缩硫醛、酮难分解,但可在Randney Ni作用下被还原:(
21、10) 环酮反应性能:对羰基的加成使羰基C原子由杂化变为杂化,张力减小,故小环反应性强;但若形成烯醇负离子的反应则不同(参见)。十二、 共轭加成1. 主体:不饱和醛酮等2. 加成选择性:(1) 在双键上亲电加成:、HOX(X与OH与羰基O都不易结合)(2) 1,4- 共轭加成:,、质子酸(HX、HCN)、ROH(3) 有机金属化合物:与羰基旁基团大小、试剂空间位阻大小有关。(羰基C与4-C竞争)a. 有机锂1,2-加成;二烃基铜锂1,4-加成。b. 羰基C两旁位阻小利于1,2-加成;4-C上位阻小利于1,4-加成。c. 试剂基团越大,越要避开底物中的大基团。3. 反应机理:酸性质子化,碱性直接
22、进攻。4. 立体选择性:环状化合物中,试剂从位阻小一侧进攻羰基。5. Michael加成反应:广义的共轭加成,用活性基团的进行加成。不对称酮用多取代的上的H进攻(参见)。特征性质:不对称环酮用取代多的加成,因生成的烯醇双键上有取代基而稳定。十三、 醛酮1. 还原反应(1) 将还原成a. Clemmensen还原:Zn,Hg,HCl。只还原醛酮羰基 还原不饱和醛酮,被还原 不与羰基共轭,不还原。不饱和醛酮中活性改变的原因:并非本身被活化,而是经1,4- 加成后再烯醇式互变,表观上是加成了。优先还原的还原剂,均是1,4- 加成比1,2- 加成优先的还原剂。b. Wolff L-Kishner-Hu
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 有机化学 知识 整理
限制150内