全等几何模型讲解.docx
《全等几何模型讲解.docx》由会员分享,可在线阅读,更多相关《全等几何模型讲解.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上常见的几何模型一、旋转主要分四大类:绕点、空翻、弦图、半角。这四类旋转的分类似于平行四边形、矩形、菱形、正方形的分类。1.绕点型(手拉手模型)(1)自旋转:例题讲解:1. 如图所示,P是等边三角形ABC内的一个点,PA=2,PB=,PC=4,求ABC的边长。 2. 如图,O是等边三角形ABC内一点,已知:AOB=115,BOC=125,则以线段OA、OB、OC为边构成三角形的各角度数是多少? 3.如图,P是正方形ABCD内一点,且满足PA:PD:PC=1:2:3,则APD= . 4.如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为
2、PA=1,PB=2,PC=3。求此正方形ABCD面积。(2)共旋转(典型的手拉手模型)模型变形: 例题讲解: 1. 已知ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F逆时针排列),使DAF=60,连接CF.(1)如图1,当点D在边BC上时,求证:BD=CFAC=CF+CD.(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由; (3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系
3、。2.(13北京中考)在ABC中,AB=AC,BAC=(),将线段BC绕点B逆时针旋转60得到线段BD。(1)如图1,直接写出ABD的大小(用含的式子表示);(2)如图2,BCE=150,ABE=60,判断ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若DEC=45,求的值。2.半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。例题:1.在等腰直角ABCD的斜边上取两点M,N,使得,记AM=m,MN=x,BN=n,求证以m,x,n为边长的三角形为直角三角形。2.如图,正方形ABCD的边长为1,AB,AD上各存在
4、一点P、Q,若APQ的周长为2,求的度数。3.、分别是正方形的边、上的点,且,为垂足,求证:4. 已知,正方形ABCD中,MAN=45,MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AHMN于点H(1)如图,当MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB;(2)如图,当MAN绕点A旋转到BMDN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图,已知MAN=45,AHMN于点H,且MH=2,NH=3,求AH的长(可利用(2)得到的结论)5.已知:正方形ABCD中,MAN=45,MAN绕点
5、A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N当MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN(1)当MAN绕点A旋转到BMDN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明(2)当MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想6.(14房山2模). 边长为2的正方形的两顶点、分别在正方形EFGH的两边、上(如图1),现将正方形绕点顺时针旋转,当点第一次落在上时停止旋转,旋转过程中,边交于点,边交于点.(1)求边在旋转过程中所扫过的面积;(2)旋转过程中,当和平行时(如图2),求
6、正方形旋转的度数;(3)如图3,设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.7. (2011石景山一模)已知:如图,正方形ABCD中,AC,BD为对角线,将BAC绕顶点A 逆时针旋转(045),旋转后角的两边分别交BD于点P、点Q,交BC,CD于点E、点F,连接EF,EQ(1)在BAC的旋转过程中,AEQ的大小是否改变?若不变写出它的度数;若改变,写出它的变化范围(直接在答题卡上写出结果,不必证明);(2)探究APQ与AEF的面积的数量关系,写出结论并加以证明8已知在中,于,点在直线上,点在线段上,是的中点,直线与直线交于点.(1)如图1,若点在线段上,请分别写出线段和之间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 几何 模型 讲解
限制150内