数列知识点大全及经典测试题(共12页).doc
《数列知识点大全及经典测试题(共12页).doc》由会员分享,可在线阅读,更多相关《数列知识点大全及经典测试题(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数列知识点回顾第一部分:数列的基本概念1理解数列定义的四个要点数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列在数列中同一个数可以重复出现项a与项数n是两个根本不同的概念数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2数列的通项公式一个数列 a的第n项a与项数n之间的函数关系,如果用一个公式a=来表示,就把这个公式叫做数列 a的通项公式。若给出数列 a的通项公式,则这个数列是已知的。若数列 a的前n项和记
2、为S,则S与a的关系是:a=。第二部分:等差数列1等差数列定义的几个特点: 公差是从第一项起,每一项减去它前一项的差(同一常数),即d = aa(n2)或d = aa (nN)要证明一个数列是等差数列,必须对任意nN,aa= d (n2)或d = aa都成立一般采用的形式为: 当n2时,有aa= d (d为常数)当n时,有aa= d (d为常数)当n2时,有aa= aa成立若判断数列 a不是等差数列,只需有aaaa即可2等差中项若a、A、b成等差数列,即A=,则A是a与b的等差中项;若A=,则a、A、b成等差数列,故A=是a、A、b成等差数列,的充要条件。由于a=,所以,等差数列的每一项都是它
3、前一项与后一项的等差中项。3等差数列的基本性质公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd若 a、 b为等差数列,则 ab与kab(k、b为非零常数)也是等差数列对任何m、n,在等差数列 a中有:a= a+ (nm)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性、一般地,如果l,k,p,m,n,r,皆为自然数,且l + k + p + = m + n + r + (两边的自然数个数相等),那么当a为等差数列时,有:a+ a+ a+ = a+ a+ a+ 公差为d
4、的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差)如果 a是等差数列,公差为d,那么,a,a,a、a也是等差数列,其公差为d;在等差数列 a中,aa= aa= md (其中m、k、)在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的减少而减小;d0时,等差数列中的数等于一个常数设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(1),则a=4等差数列前n项和公式S=与S= na的比较前n项和公式公式适用范围相同点S=用于已知等
5、差数列的首项和末项都是等差数列的前n项和公式S= na用于已知等差数列的首项和公差5等差数列前n项和公式S的基本性质数列 a为等差数列的充要条件是:数列 a的前n项和S可以写成S= an+ bn的形式(其中a、b为常数)在等差数列 a中,当项数为2n (nN)时,SS= nd,=;当项数为(2n1) (n)时,SS= a,=若数列 a为等差数列,则S,SS,SS,仍然成等差数列,公差为若两个等差数列 a、 b的前n项和分别是S、T(n为奇数),则=在等差数列 a中,S= a,S= b (nm),则S=(ab)等差数列a中,是n的一次函数,且点(n,)均在直线y =x + (a)上记等差数列a的
6、前n项和为S若a0,公差d0,则当a0且a0时,S最大;若a0 ,公差d0,则当a0且a0时,S最小第三部分:等比数列1正确理解等比数列的含义q是指从第2项起每一项与前一项的比,顺序不要错,即q = (n)或q = (n2)由定义可知,等比数列的任意一项都不为0,因而公比q也不为0要证明一个数列是等比数列,必须对任意n,= q;或= q (n2)都成立2等比中项与等差中项的主要区别如果G是a与b的等比中项,那么=,即G= ab,G =所以,只要两个同号的数才有等比中项,而且等比中项有两个,它们互为相反数;如果A是a与b的等差中项,那么等差中项A唯一地表示为A=,其中,a与b没有同号的限制在这里
7、,等差中项与等比中项既有数量上的差异,又有限制条件的不同3等比数列的基本性质公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q( m为等距离的项数之差)对任何m、n,在等比数列 a中有:a= a q,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性一般地,如果t ,k,p,m,n,r,皆为自然数,且t + k,p,m + = m + n + r + (两边的自然数个数相等),那么当a为等比数列时,有:aaa = aaa 若 a是公比为q的等比数列,则| a|、a、ka、也是等比数列,其公比分别为| q |、q、q、如果 a
8、是等比数列,公比为q,那么,a,a,a,a,是以q为公比的等比数列如果 a是等比数列,那么对任意在n,都有aa= aq0两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积当q1且a0或0q1且a0时,等比数列为递增数列;当a0且0q1或a0且q1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q0时,等比数列为摆动数列4等比数列前n项和公式S的基本性质如果数列a是公比为q 的等比数列,那么,它的前n项和公式是S=也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处因此,使用等比数列的前n项和公式,必须要弄清公
9、比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q1进行讨论当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=若S是以q为公比的等比数列,则有S= SqS若数列 a为等比数列,则S,SS,SS,仍然成等比数列若项数为3n的等比数列(q1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,S成等比数列,T,T,T亦成等比数列二、难点突破1并不是所有的数列都有通项公式,一个数列有通项公式在形式上也不一定唯一已知一个数列的前几项,这个数列的通项公式更不是唯一的2等差(比)数列的定义中有两个要点:一是“从第2项起”
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 知识点 大全 经典 测试 12
限制150内