极限存在准则两个重要极限(共4页).docx
《极限存在准则两个重要极限(共4页).docx》由会员分享,可在线阅读,更多相关《极限存在准则两个重要极限(共4页).docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上准则1:若数列、满足以下条件: (i) ,当时,有; (ii),。 那么数列极限存在,且。证明:因为,所以对,当时,有,即 ,对,当时,有,即,又因为,所以当时,有, 即有:,即,所以 。准则1如果函数满足下列条件:(i)当时,有。(ii)当时,有。那么当时,的极限存在,且等于。第一个重要极限:作为准则I的应用,下面将证明第一个重要极限:。证明:作单位圆,如下图:设为圆心角,并设见图不难发现:,即:,即 , (因为,所以上不等式不改变方向,若,不等式也成立) 当改变符号时,及1的值均不变,故对满足的一切 ,有。 又因为,所以 而 ,证毕。真相:,g(x)为此极限变化趋
2、势下的无穷小。例1 。例2 。例3 。例4 。准则:单调有界数列必有极限如果数列满足:,就称之为单调增加数列;若满足:,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。 如果,使得:,就称数列为有上界;若,使得:,就称有下界。回顾:收敛于有界的关系:收敛有界。准则:单调上升,且有上界的数列必有极限。准则: 单调下降,且有下界的数列必有极限。注1:由前已知,有界数列未必有极限,若加单调性,就有极限。 2:准则,可推广到函数情形中去,在此不一一陈述了。的几何解释:单增数列的点只可能向数轴右方移动,或者无限向右移动,或无限趋近于某一定点A,而有界数列只可能后者发生。第二个重要极限:作为准则的一个应用,下面来证明极限是存在的。先考虑取正整数时的情形:设,证明是单调有界的。 易得由上式知有界。由准则或知 存在,并使用来表示,即注 1:关于此极限存在性的证明,书上有不同的方法,希望同学自己看! 2:我们可证明:,具体在此不证明了,书上也有,由证明过程知:。 3:指数函数及自然对数中的底就是这个常数。真相,g(x)为此极限变化趋势下的无穷小。例0 例1 例2 例3 例4 专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极限 存在 准则 两个 重要
限制150内