几何最值问题讲义(共5页).doc
《几何最值问题讲义(共5页).doc》由会员分享,可在线阅读,更多相关《几何最值问题讲义(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上几何最值问题(讲义)l 解决几何最值问题的通常思路_,_,_是解决几何最值问题的理论依据,_是解决最值问题的关键通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段l 几何最值问题中的基本模型举例轴对称最值图形原理两点之间线段最短两点之间线段最短三角形三边关系特征A,B为定点,l为定直线,P为直线l上的一个动点,求AP+BP的最小值A,B为定点,l为定直线,MN为直线l上的一条动线段,求AM+BN的最小值A,B为定点,l为定直线,P为直线l上的一个动点,求|AP-BP|的最大值转化作其中一个定点关于定直线l的对称点先平移AM或B
2、N使M,N重合,然后作其中一个定点关于定直线l的对称点作其中一个定点关于定直线l的对称点折叠最值图形原理两点之间线段最短特征在ABC中,M,N两点分别是边AB,BC上的动点,将BMN沿MN翻折,B点的对应点为B,连接AB,求AB的最小值转化转化成求AB+BN+NC的最小值二、精讲精练1. 如图,点P是AOB内一定点,点M,N分别在边OA,OB上运动,若AOB=45,OP=,则PMN周长的最小值为 2. 如图,当四边形PABN的周长最小时,a= 3. 如图,已知两点A,B在直线l的异侧,A到直线l的距离AM=4,B到直线l的距离BN=1,MN=4,点P在直线l上运动,则的最大值是_ 4. 动手操
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 几何 问题 讲义
限制150内