《高效液相色谱法(共11页).doc》由会员分享,可在线阅读,更多相关《高效液相色谱法(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2。2。29 液相色谱法(EP4)液相色谱法(LC)是一种根据两种互不相溶的相之间种类分布的不同而进行色谱分离的方法。在这两种互不相溶的相中,移动相是一种渗过色谱柱中固定相的液体。 液相色谱法(LC)主要基于吸附、质量分布、离子交换、尺寸排阻或立体化学相互作用的原理。仪器液相色谱法的仪器包括:泵系统、进样器、色谱柱(可用柱温控制器)、检测仪和数据采集系统(也可用积分仪或图形记录器)。移动相从一个或多个贮器流出,通常以恒速经过色谱柱,再流经检测仪。泵系统液相色谱法所用的泵系统需以恒定流速输送移动相,应尽量减少压力波动,如将加压溶剂通过脉冲减幅装置进行传送。管道和接头要能
2、承受泵系统产生的压力。液相色谱泵可以与能将系统中裹入气泡排出的设施相连接。微处理器控制系统能根据设定好的程序准确地输送恒定(等度洗脱)或不同成分(梯度洗脱)的移动相。梯度洗脱时,泵系统从多个贮器发送溶剂,将泵调到低压或高压即可对溶剂进行混和。进样器用可在高压下使用的进样系统在(或靠近)色谱柱顶部将样品溶液注入流动着的移动相中。使用手动操作的固定回路变量装置或自动进样器进样。手动分次注入回路会降低进样量的精确度。固定相液相色谱法中使用的固定相有多种,包括: 二氧化硅、氧化铝或多孔石墨, 用于正常相色谱法。该方法是根据吸附和(或)质量分布的不同进行分离。 树脂或带酸基(或碱基)的多聚体,用于离子交
3、换色谱法。该方法是在待分离的离子与移动相中的离子之间的竞争基础上进行分离。 多孔硅石或多聚体,用于尺寸排阻色谱法。该方法是根据分子量之间的不同进行分离的,与空间排阻法色谱法相对应。 多种由多聚体、硅石或多孔石墨经过化学变性的固定相,用于反相液体色谱法。该方法是主要根据移动相和固定相之间的分子隔离来进行分离。经过特殊化学变性的固定相如纤维素或直链淀粉衍生物、蛋白质或肽、环糊精等,用于旋光对映体的分离(手性色谱法)大多数分离都基于一种隔离机制,即用化学变性硅作固定相,用极性溶剂作移动相。载体(如二氧化硅的硅烷醇基)的表面与各种硅烷试剂发生反应,在载体表面产生以共价键联系的、覆盖大量活动部位的甲硅烷
4、基衍生物。键合相的性质是确定色谱系统分离性能的一个重要参数。现将常用的键合相列于下表中:辛基=Si-(CH2)7-CH3C8十八烷基=Si-(CH2)17-CH3C18苯基=Si-(CH2)n- (C6H5)C6H5氰基丙基=Si-(CH2)3-CNCN氨基丙基=Si-(CH2)3-NH2NH2二醇=Si-(CH2)3-OCH(OH)-CH2-OH除非制造商另有说明,使用二氧化硅的反相色谱柱在pH值为2。08。0的移动相中是稳定的。而装有多孔石墨或聚合物颗粒(如苯乙烯二乙烯基苯共聚物)的色谱柱在更宽的pH值范围内是稳定的。在某些情况下,可用未改性的二氧化硅、多孔石墨或化学变性的极性硅(如氰基丙
5、基或二醇)做固定相,加上非极性移动相进行正常相色谱分析。用于分析分离时,最常用的移动相的粒度为3m 10m不等。移动相的颗粒可以是不同孔径和比表面积的球状或不规则形状。这些参数构成了固定相的色谱特性。就反相来说,其固定相的性质、键合程度(如以载碳表示的)以及该固定相是否有尾帽(即残留的甲硅烷醇基已被甲硅烷基化)仍是其决定因素。当残留甲硅烷醇基存在时,会产生拖尾峰,特别是碱性物质的拖尾峰。除非专论中另有规定,分析色谱法中使用的色谱柱应为不锈钢,其长度和内径各异()。 内径小于2mm的柱子通常叫做微孔柱。分析时,移动相和柱子的温度必须保持恒定。大多数分离是在室温下进行的,但是可以给柱子加热,提高柱
6、效。在给柱子加热时,建议温度不超过60C,以免固定相老化或移动相的成分发生变化。移动相对正常相色谱分析法来说,其使用的极性溶液要少些。严格控制移动相中的水份,才能得到可再现的结果。而在反相液相色谱分析法中,则使用水性移动相(有机改性剂可有可无)。移动相的组份通常需过滤,除去大于0。45m的微粒。多组份的移动相的制备方法是:(除非规定了质量)量取各组份所需体积后进行混和。或者,可以用配量阀控制的单个泵来输送溶剂,所需的溶剂在配量阀中按比例进行混和。泵送前,通常用喷射氦、音波或在线膜(或真空模块)的方式以避免在检测器中产生气泡,从而脱去溶剂中的气泡。配制移动相所有的溶剂通常不含稳定剂,若用紫外检测
7、器,其在检测波长上应是透明的。所用溶剂及其他成份的质量应合适。如需调节pH时,只能用移动相中的水性成份,而不是混合物来调节。使用缓冲液时,在色谱分析结束后,用移动相(5,V/V)中的水和有机改性剂的混合物适当冲洗色谱系统,防止盐类结晶。移动相也可以含有其他成份,如进行离子对色谱分析时用反离子;用非手性固定相进行色谱分析时用手性选择器等。检测器紫外可见(UV/Vis)分光光度计,包括二级管阵列检测器, 是最为常用的检测器。也可用荧光分光光度计、差示折光计、电化检测器、质谱仪、光散射检测器、放射性检测器或其他特殊检测器。方法在室温或专论中规定的温度下,用规定的移动相和流速平衡色谱柱,直到出现稳定的
8、基线。配制所需的待检品溶液和参照溶液。配制的溶液中不得有固体颗粒。衡量系统稳定性的标准在色谱分离技术()一章中有描述。调整色谱系统的参数以满足系统适应性标准,其调整幅度也在同一章节中进行了描述。窗体底部2。2。46。 色谱分离技术 (EP4)色谱分离技术为多级分离方法,供试品的组份分布在2个相之间,一个是固定相,另一个是移动相。固定相可以是固体或以固体或凝胶为载体的液体。固定相可装载于色谱柱中,摊开作为一个层,或以膜等形式分布。移动相可以是气体、液体或超临界流体。可以在吸附、质量分布(分隔)、离子交换等基础上进行分离,或根据分子的理化特性(如大小、质量、体积等等)的不同进行分离。本章描述了系统
9、适应性中普通参数的定义、计算以及普遍要求,其分离原则、仪器和方法在下列通用方法中有具体描述:纸色谱法 ()薄层色谱法 ()气相色谱法 ()液相色谱法 ()尺寸排阻色谱法 ()超临界流体色谱仪()定义下述定义常被用来计算专论中的限量。具备某些设备之后,某些参数如信噪比,即可用生产厂家提供的软件进行计算。用户有责任确保软件中所使用的计算方法符合欧洲药典的要求。否则,必须做适当修改。色谱图色谱图是监测器反应、用于测量流出物浓度或其他数量相对于时间、体积或距离的一种图形或其他表示。理想化的图谱是由基线上连续的高斯峰来表示的。保留数据保留时间及保留体积洗脱色谱法的保留测量可由直接由色谱图中最大峰的位置的
10、保留时间(tR)来表示。从保留时间中可计算出保留体积(VR)。tR=从注样点到与该组份相应的最大峰落下的垂直线之间的、沿基线的保留时间或距离。v=移动相的流速。质量分布率质量分布率 (Dm) (也叫容量因子 k 或保留因子 k) 定义如下:KC=平衡分布系统 (也叫分布常数),VS=固定相的体积,VM=移动相的体积。用下式确定色谱图中某个成份的质量分布率:tR=从注样点到与该组份相应的最大峰落下的垂直线之间、沿基线的保留时间(或体积)或距离,tM=滞留时间 (或体积): 从注样点到与未保留组份相应的、峰最高处落下的垂直线之间、沿基线的时间 (或体积) 或距离。分布系数一种组份在尺寸排阻色谱分析
11、法的色谱柱中的洗脱特征可由分布系数(Ko)来确定:tR=从注样点到与该组份相应的最大峰落下的垂直线之间、沿基线的保留时间(或体积)或距离,to=滞留时间 (或体积): 从注样点到与未保留组份相应的、峰最高处落下的垂直线之间、沿基线的时间 (或体积) 或距离。tt=从注样点到与能完全通过固定相的组份的最大峰落下的垂直线之间、沿基线的保留时间(或体积)或距离。阻滞因素推迟因子 (RF) (也叫保留因子 Rf),用于平面色谱法中,是从应用点与到斑点中心的距离与溶剂前沿飘离应用点的距离之比。b=被测物的飘移距离,a=溶剂前沿的飘移距离。色谱数据峰可用峰面积(A)或峰高(h) 和半高峰宽(wh)或峰高(
12、h)和屈曲点之间的峰宽(wi)来定义。在高斯峰中 (图 2。2。46。-1),其关系如下:图 2。2。46。-1。对称因子一个峰的对称因子 (As) (或拖尾因子) (图 2。2。46。-2)是从下式中计算的:w0。05=在峰高二十分之一处的峰宽,d=从峰最高处落下的垂直线与在二十分之一峰高处峰前沿之间的距离。值为1。0时表示完全(理想的)对称。Figure 2。2。46。-2。柱子的性能及视在理论板数柱子性能(视在效率) 根据所用的技术,可根据等温线、等度(或等密度线)条件得出的数据进行计算。从下式中得出的理论板数(N),其中, tR 和 wh 值必须用同样的单位(时间、体积或距离)表示。t
13、R=从注样点到与该组份相应的最大峰落下的垂直线之间、沿基线的保留时间(或体积)或距离,wh=半高峰宽。理论板数随组份、柱子和保留时间的不同而有所不同。分离数据分离度同样高度的两个组份峰之间的分离度 (Rs)可用下面的公式计算: tR1和 tR2=从注样点到两个相邻峰最高处落下的垂直线之间沿基线的保留时间或距离,wh1 和 wh2=半高时的峰宽。分离度大于1.5时符合基线分离。当各峰之间的高度完全不同时,上述给出的公式可能不适用。在定量平面色谱分析法中,用迁移距离来代替了保留时间,其分离度可以用下列表达式进行计算: RF1 和 RF2=从应用点到斑点中心的距离与溶剂前沿飘离应用点的距离之比(阻滞
14、因子),wh1 和 wh2=半高时的峰宽,A=溶剂前沿的迁移距离。峰谷比在相关物质的检验中,当杂质未从被分析物中完全分离出来时,峰谷比(p/v)可作为一种系统适用性要求。(图 2.2.46.3)。Hp=由于杂质影响,峰在推定基线以上的高度,Hv=由于杂质和被分析物的影响,在推定基线以上分离峰的曲线最低处的高度。Figure 2.2.46.-3.相对保留相对保留(R)是从下列表达式的估算中得出的: tR2=感兴趣的峰的保留时间,tR1=对比峰(通常指与供试品相对应的峰)的保留时间, tM=滞留时间(或体积): 从注样点到与未保留组份相应的、峰最高处落下的垂直线之间、沿基线的时间或距离。在平面色谱
15、分析法中,用滞留因子RF2 和 RF1 代替了 tR2 和 tR1。定量精确度信噪比信噪比(S/N)影响到定量分析的精确度,是用下列公式计算的: H=在色谱图中,用规定的标准溶液、在相当于20倍半高宽的距离中观察到的、从峰的最高处至信号的推定基线之间、对应于被测组份的峰高度(图 2.2.46.-4), h=色谱图中注样后或使用空白后所得到的背景噪音范围,是在色谱图中相当于20倍该峰的半高宽范围内观察到的。该色谱图是用规定的标准溶液得出的,如可能的话,对称分布于该峰周围。Figure 2。2。46。-4。重现性响应的重现性是以连续的、一系列的进样测量或使用标准溶液后得到的估计百分数相对标准偏差(
16、RSD%)来表示,并用下列表达式来计算的:yi=用内标法测出的峰面积、峰高或面积比的值,=各值的平均值,n=各值的数目最大允许的相对标准偏差(RSDmax)是从一系列标准溶液进样后、用下述表达式计算的定义限量: K=从 式中得出的常数(0.349),式中, 表示进6针样后,为达到B1.0而需要的RSD,B=专论中定义的上限减去100,假定是按该方法的再现性进行设置的,n=平行注入标准溶液的数目(3n 6),t90%,n1=在90%的概率水平上,研究者的时间t(双面)和 n1自由度。系统适应性系统适应性试验是本方法的一个整体部份,用来确保色谱系统的确切性能。 视在效率、质量分布比率、分离度、相对
17、保留和对称因子都是通常用来评价柱子性能的参数。可能影响色谱行为的因素包括移动相的构成、离子强度、温度和pH值、流速、柱子长度、温度、压力,以及固定相的特征包括多孔性、粒度、颗粒类型、比表面积,在反相载体中,则是化学改良的程度(用尾帽、载碳等等表示)。所使用设备的不同组件必须合格,能达到做测试和化验所需要的精度。除非专论中另有规定,应达到下列要求: 除非专论中另有规定,主峰的对称因子应在0.8 到1.5之间。此要求普遍适用于药典中所描述的检验或化验。规定的标准溶液重复进样的相对标准偏差最大不超过表2.2.46.-1所规定的值。此要求仅适用于含量测试,不适用于相关物质的检验。 峰(对应于信噪比为3
18、时)的检测限量应低于相关物质检验中忽略限量(报告阈值)峰(对应于信噪比为10时)的定量测试限量相当于或低于相关物质检验中忽略限量(报告阈值)。Table 2.2.46.-1. 重现性要求单独进样的次数3456B()最大容许的相对标准偏差2.00.410.590.730.852.50.520.740.921.063.00.620.891.101.27色谱条件的调整色谱分析测试中,在基本不改变该分析方法的前提下,现将调整各参数以满足系统适应性条件的调整幅度列出供参考。所述的色谱条件已在专论中进行了验证。包括系统适应性试验,以确保顺利进行检验或化验所需的分离。不过, 由于固定相是以概述的方式进行描述
19、的,市场上能买到的固定相种类也很多,它们的色谱性能也不相同,因此有必要对色谱条件进行一些调整,以便达到所规定的系统适应性要求。 特别是在使用反相液相色谱法时,即使调整了不同的参数,也不一定会有满意的色谱。在这种情况下,有必要换上不同厂家生产的、同样型号的柱子(如十八烷基甲硅烷基硅胶),从而显示所需的色谱特征。关键参数的调整在专论中已有详尽描述,以确保符合系统适应性。应避免有可能对系统性能产生累积影响的多次调整。薄层色谱法和纸色谱法移动相的组成: 微小溶剂成份的数量可在30的相对范围,或2的绝对范围内进行调整,以较大者为准。 其他成份的调整不得超过10的绝对范围。 移动相中水性成份的pH值:0。
20、2 pH, 除非专论中另有规定;或 测定中性物质时,1.0 pH。 移动相的缓冲成份中盐的浓度:10。应用体积:使用精细粒度碟(2-10m)时,将规定体积减少到20%。溶剂前沿的飘移距离不得少于50mm。液相色谱法移动相的组成:微小溶剂成份的数量可在30的相对范围,或2的绝对范围内进行调整,以较大者为准。 其他成份的调整不得超过10的绝对范围。移动相中水性成份的pH值:0.2 pH,除非专论中另有规定;或 测定中性物质时, or 1.0 pH。移动相的缓冲成份中盐的浓度:10。检测器波长: 不得调整。固定相:柱长:70,柱子内径:25,粒度: 不得小于50, 不得再小。流速:50。温度:10,
21、 最高不得超过60C。进样体积:只有在测定峰的检测和重现性满意时才可以减少。梯度洗脱: 对所使用设备进行重新配置,可能会严重改变方法中所描述的分离度、保留时间和相对保留。发生重大改变时,有可能是因为过大的停留体积,即两种洗脱液的交汇点与柱子顶部之间的体积。气相色谱法固定相:柱长:70,柱子内径:50,粒度: 最多可减少50,不允许再增加,膜厚度: 50 +100%。流速:50%。温度:10 %。进样量: 只要监测结果和重现性满意,可减少。超临界流体色谱法移动相的组成: 对已装填好的柱子,微小溶剂成份的量可按30相对范围或的2的绝对范围进行调整,以较大者为准。不允许对毛细管柱系统进行调整。检测器
22、波长: 不允许调整。固定相:柱长:70,柱子内径:25(已装填好的柱子),50(毛细管柱), 粒度:最多能减少50,不允许再减少 (已装填好的柱子)。流速:50。温度:10。进样量:只要监测结果和重现性满意,可减少。量化外标法。 拟分析的组份浓度是通过将测试溶液的响应(峰) 与标准溶液的响应(峰)相对比而确定的。内标法。 从供试品中溶解的、未(与内部标准)发生反应的等量组份被引入测试溶液和标准溶液中。供试品的浓度是通过将供试品的峰面积或峰高与测试溶液中内部标准品的比率与供试品的峰面积或峰高与标准溶液中内部标准品的比率相比较而得出的。标化方法。 供试品的一种或多种成份的百分含量是通过计算(一个或
23、多个峰)峰面积在所有峰(不包括溶剂峰、任何添加试剂峰或低于忽视限量的峰)面积中所占的比例来计算的。检定方法。 确定测定或评估信号(y) 和物质(x)的量(浓度、质量等等)之间的关系并计算校验函数。分析结果是通过反函数来计算被分析物的测量信号或评估信号。对含量测定和组份的定量测定,外标法、内标法或校验法可能在专论中有所描述,但标定方法通常不适用。在相关物质的检验中,通常采用一种标准溶液的外标法或标定方法。但是, 在标定法或外标法中,当把测试溶液的稀释液用作对比时,相关物质的响应与物质本身相似 (响应因子0.8 至1.2),否则响应因素的倒数,即校正因子就应该包括在其中。 响应因子是相对的,即一种物质的相对于另一种物质在该测试所描述的条件下的等量反应。当相关物质的检验描述杂质的总和或对某种杂质进行定量测定时,选择合适的阈值和峰面积的适当积分条件就显得非常重要。此类测试中的忽略限量,如低于限量的、不作计算的峰面积通常为0.05%。因此,数据收集系统的阈值设定至少应相当于忽略限量的一半。杂质峰的积分,虽然不完全与主峰分离,最好用“谷至谷推断法”(切向表层物)。用于溶解样品的溶剂峰也应予以忽略。专心-专注-专业
限制150内