函数自变量取值范围的确定方法(共14页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《函数自变量取值范围的确定方法(共14页).doc》由会员分享,可在线阅读,更多相关《函数自变量取值范围的确定方法(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上函数自变量取值范围的确定策略金山初级中学 庄士忠 函数是初中数学一个十分重要的内容,为保证函数式有意义或实际问题有意义,函数式中的自变量取值通常要受到一定的限制,这就是函数自变量的取值范围。函数自变量的取值范围是函数成立的先决条件,初中阶段确定函数自变量的取值范围大致可分为三种类型:(1)函数关系式中函数自变量的取值范围;(2)实际问题中函数自变量的取值范围;(3)几何问题中函数自变量的取值范围。一、 函数关系式中函数自变量的取值范围:初中阶段,在一般的函数关系中自变量的取值范围主要考虑以下四种情况:(1)函数关系式为整式形式:自变量取值范围为任意实数;(2)函数关系
2、式为分式形式:分母0;(3)函数关系式含算术平方根:被开方数0;(4)函数关系式含0指数:底数0。典型例题:例1:函数的自变量x的取值范围在数轴上可表示为【 】ABCD【分析】根据二次根式有意义的条件,计算出的取值范围,再在数轴上表示即可,不等式的解集在数轴上表示的方法:,向右画;,向左画,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示。根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须 。故在数轴上表示为:。故选D。例2:函数y= 中自变量x取值范围是【 】Ax=2 Bx2 Cx2 Dx2【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据
3、分式分母不为0的条件,要使在实数范围内有意义,必须。故选B。例3:函数中自变量x的取值范围是【 】Ax2 Bx2 Cx2 Dx2【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须。故选A。例4:函数的图像在【 】象限 A.第一 B.第一、三 C.第二D.第二、四【分析】函数的定义域为,根据面直角坐标系中各象限点的特征知图像在第一象限,故选A。二、实际问题中函数自变量的取值范围:在实际问题中确定自变量的取值范围,主要考虑两个因素:(1)自变量自身表示的意义,如时间、路程、用油量等不能为负数;(2)问题
4、中的限制条件,此时多用不等式或不等式组来确定自变量的取值范围。典型例题:例1:某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量(注:总成本=每吨的成本生产数量)【分析】(1)利用待定系数法求出一次函数解析式即可,根据当生产数量至少为10吨,但不超过50吨时,得出x的定义域。(2)根据总成本=每吨的成本生产数量,利用(1)中所求得出即可。【答案】解:(1)利用图象设y关于x的函数解析式为y=kx+b,将(10,1
5、0)(50,6)代入解析式得:,解得:。y关于x的函数解析式为y=x+11(10x50)。(2)当生产这种产品的总成本为280万元时,x(x+11)=280,解得:x1=40,x2=70(不合题意舍去)。该产品的生产数量为40吨。例2:某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件。已知每件服装的收入和所需工时如下表:服装名称西服休闲服衬衣工时/件收入(百元)/件321设每周制作西服x件,休闲服y件,衬衣z件。(1) 请你分别从件数和工时数两个方面用含有x,y 的代数式表示衬衣的件数z。(2)
6、求y与x之间的函数关系式。(3) 每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?【分析】(1)题目中的已知条件分别从件数和工时数两个方面用含x,y的关系式表示z。(2)由(1)整理得:y=3603x。(3)由题意得s=3x+2y+z,化为一个自变量,得到关于x的一次函数。由题意得,解得30x120,从而根据一次函数的性质作答。【答案】解:(1)从件数方面:z=360xy, 从工时数方面:由x+y+z=120整理得:z=4802xy。(2)由(1)得360xy=4802xy,整理得:y=3603x。(3)由题意得总收入s=3x2yz=3x2(3603x)2x=x720
7、由题意得,解得30x120。由一次函数的性质可知,当x=30的时候,s最大,即当每周生产西服30件,休闲服270件,衬衣60件时,总收入最高,最高总收入是690百元。例3:某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10 件时,每件按3000 元销售;若一次购买该种产品超过10 件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?(2)设商家一次购买这种产品
8、x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)【分析】(1)设件数为x,则销售单价为300010(x10)元,根据销售单价恰好为2600元,列方程求解。(2)由利润y=销售单价件数,及销售单价均不低于2600元,按0x10,10x50,x50三种情况列出函数关系式。(3)由(2)的函数关系式,利用二次函数的性质
9、求利润的最大值,并求出最大值时x的值,确定销售单价。【答案】解:(1)设件数为x,依题意,得300010(x10)=2600,解得x=50。答:商家一次购买这种产品50件时,销售单价恰好为2600元。(2)当0x10时,y=(30002400)x=600x;当10x50时,y=300010(x10)2400x,即y=10x2+700x;当x50时,y=(26002400)x=200x。(3)由y=10x2+700x可知抛物线开口向下,当时,利润y有最大值,此时,销售单价为300010(x10)=2750元,答:公司应将最低销售单价调整为2750元。例4:某商品的进价为每件50元,售价为每件60
10、元,每个月可卖出200件。如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元)。设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元,(1)求y与x的函数关系式,并直接写出x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y与x的函数关系式。(2)根据题意利用配方法得出二次函数的顶点形式(或用公式法),从而得出当x=5时得出y的最大值。【答案】解:(1)设每件商品的售价上涨x元(x为正整数),则每件商品的利润为:(6050x)元,总销量为:(20010x)件,
11、商品利润为:y=(6050x)(20010x)=10x2100x2000。原售价为每件60元,每件售价不能高于72元,0x12。(2)y=10x2100x2000=10(x5)2+2250,当x=5时,最大月利润y=2250。答:每件商品的售价定为5元时,每个月可获得最大利润,最大月利润是2250元。例5:市某生态示范村种植基地计划用90亩120亩的土地种植一批葡萄,原计划总产量要达到36万斤(1)列出原计划种植亩数y(亩)与平均每亩产量x(万斤)之间的函数关系式,并写出自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万
12、斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?【分析】(1)直接根据亩产量、亩数及总产量之间的关系得到函数关系式即可。(2)根据题意列出后求解即可。【答案】解:(1)由题意知:xy=36,()。(2)根据题意得:,解得:x=0.3。经检验:x=0.3是原方程的根。1.5x=0.45。答:改良前亩产0.3万斤,改良后亩产0.45万斤。例6、小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 自变量 范围 的确 方法 14
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内