小学奥数举一反三五年级1-40完整版(学生用).doc
《小学奥数举一反三五年级1-40完整版(学生用).doc》由会员分享,可在线阅读,更多相关《小学奥数举一反三五年级1-40完整版(学生用).doc(125页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数学 SHU XUE适用于小学五年级奥数戴氏教育集团武胜总校 编制专心-专注-专业目 录第1讲 平均数(一)专题简析:把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记: 平均数=总数量总份数 总数量=平均数总份数 总份数=总数量平均数例1.有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?变式训练1.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分
2、。问:甲、丁各得多少分?2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?3.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵?例2.一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。求这个班男生有多少人?变式训练1.两组学生进行跳绳比赛,平均每人跳152下。甲组有6人,平均每人跳140下,乙组平均每人跳160下。乙组有多少人?2.有两块棉田,平均每亩产量是
3、92.5千克,已知一块地是5亩,平均每亩产量是101.5千克;另一块田平均每亩产量是85千克。这块田是多少亩?3.把甲级和乙级糖混在一起,平均每千克卖7元,乙知甲级糖有4千克,平均每千克8元;乙级糖有2千克,平均每千克多少元?例3.某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?变式训练1.已知九个数的平均数是72,去掉一个数之后,余下的数的平均数是78。去掉的数是多少?2.有五个数,平均数是9。如果把其中的一个数改为1,那么这五个数的平均数为8。这个改动的数原来是多少?3.甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分。可是,甲在抄分数时,把自己
4、的分错抄成了87分,因此,算得四人的平均分是88分。求甲在这次考试中得了多少分?例4.五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?变式训练1.五(1)班有40人,期中数学考试,有2名同学去参加体育比赛而缺考,全班平均分为92分。缺考的两位同学补考均为100分,这次五(1)班同学期中考试的平均分是多少分?2.某班的一次测验,平均成绩是91.3分。复查时发现把张静的89分误看作97分计算,经重新计算,该班平均成绩是91.1分。问全班有多少同学?3.五个数的平均数是18,把其中一个数改为6
5、后,这五个数的平均数是16。这个改动的数原来是多少?例5.把五个数从小到大排列,其平均数是38。前三个数的平均数是27,后三个数的平均数是48。中间一个数是多少?变式训练1,甲、乙、丙三人的平均年龄为22岁,如果甲、乙的平均年龄是18岁,乙、丙的平均年龄是25岁,那么乙的年龄是多少岁?2,十名参赛者的平均分是82分,前6人的平均分是83分,后6人的平均分是80分。那么第5人和第6人的平均分是多少分?3,下图中的内有五个数A、B、C、D、E,内的数表示与它相连的所有中的平均数。求C是多少? 第讲平均数(二)例1.小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。
6、问这是他第几次测验?变式训练1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?3.两组同学进行跳绳比赛,平均每人跳152次。甲组有6人,平均每人跳140次,如果乙组平均每人跳160次,那么,乙组有多少人?例2.小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,政治、英语两科平均86分,英语比语文多10分。小亮的各科
7、成绩是多少分?变式训练1.甲、乙、丙三个数的平均数是82,甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?2.小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。这一次是他第几次测验?3.五个数排一排,平均数是9。如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?例3.两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。往返两地的平均速度是每小时多少千米?变式训练1.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,
8、已知汽船在静水中每小时行驶21千米。求汽船从甲码头顺流行驶几小时到达乙码头?2.一艘客轮从甲港驶向乙港,全程要行165千米。已知客轮的静水速度是每小时30千米,水速每小时3千米。现在正好是顺流而行,行全程需要几小时?3.甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?例4.幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块。求一共分掉多少块饼干?变式训练1.数学兴趣小组里有4名女生和3名男生,在一次数学竞赛中,女生的平均分是90分,男生的平均分
9、比全组的平均分高2分,全组的平均分是多少分?2.两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下?3.一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元。问这位技术工得多少元?例5.王强从A地到B地,先骑自行车行完全程的一半,每小时行12千米。剩下的步行,每小时走4千米。王强行完全程的平均速度是每小时多少千米?变式训练1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。2.运动员进行长跑训练,他在前一半路程中每分钟跑150米
10、,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。3.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?第3讲 长方形、正方形的周长专题简析:同学们都知道,长方形的周长=(长宽)2,正方形的周长=边长4。长方形、正方形的周长公式只能用来计算标准的长方形和正方形的周长。如何应用所学知识巧求表面上看起来不是长方形或正方形的图形的周长,还需同学们灵活应用已学知识,掌握转化的思考方法,把复杂的问题转化为标准的图形,以便计算它们的周长。例1.有5张同样大小的纸如下图(a)重叠着,每张纸都是边长6厘米的正方形,重叠的部分为边长的一半,求重叠
11、后图形的周长。变式训练1.下图由8个边长都是2厘米的正方形组成,求这个图形的周长。2.下图由1个正方形和2个长方形组成,求这个图形的周长。3.有6块边长是1厘米的正方形,如例题中所说的这样重叠着,求重叠后图形的周长。例2.一块长方形木板,沿着它的长度不同的两条边各截去4厘米,截掉的面积为192平方厘米。现在这块木板的周长是多少厘米?变式训练1.有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。求这个正方形的周长。2.有两个相同的长方形,长是8厘米,宽是3厘米,如果按下图叠放在一起,这个图形的周长是多少? 3. 有一块长方形广场,沿着它不同的两条边
12、各划出2米做绿化带,剩下的部分仍是长方形,且周长为280米。求划去的绿化带的面积是多少平方米?例3.已知下图中,甲是正方形,乙是长方形,整个图形的周长是多少? 变式训练1.有一张长40厘米,宽30厘米的硬纸板,在四个角上各剪去一个同样大小的正方形后准备做一个长方体纸盒,求被剪后硬纸板的周长。2.一个长12厘米,宽2厘米的长方形和两个正方形正好拼成下图(1)所示长方形,求所拼长方形的周长。3.求下面图形(图2)的周长(单位:厘米)。 图(1) 图(2)例4.下图是边长为4厘米的正方形,求正方形中阴影部分的周长。变式训练1.求下面图形的周长(单位:厘米)。 2.在( )里填上“”、“”或“=”。
13、甲的周长( )乙的周长3.下图中的每一小段的长度都相等,求图形的周长。 例5.如下图,阴影部分是正方形,DF=6厘米,AB=9厘米,求最大的长方形的周长。变式训练1.下面三个正方形的面积相等,剪去阴影部分的面积也相等,求原来正方形的周长发生了什么变化?(单位:厘米)2.下面是一个零件的平面图,图中每条短线段都是5厘米,零件长35厘米,高30厘米。这个零件的周长是多少厘米?3.有两个相同的长方形,长7厘米,宽3厘米,如下图重叠着,求重叠图形的周长。第4讲 长方形、正方形的面积专题简析:长方形的面积=长宽,正方形的面积=边长边长。掌握并能运用这两个面积公式,就能计算它们的面积。但是,在平时的学习过
14、程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。例1.已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。求大、小正方形的面积各是多少平方厘米? 变式训练1.有一块长方形草地,长20米,宽15米。在它的四周向外筑一条宽2米的小路,求小路的面积。 2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。原正方形的面积是多少平方厘米?3.把一个长方形的长增
15、加5分米,宽增加8分米后,得到一个面积比原长方形多181平方分米的正方形。求这个正方形的边长是多少分米?例2.一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。 变式训练1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。 2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。 3.下图中阴影部分是边长5厘米的正方形,四块完全一样的长方形的宽是8厘米,求整个图形的面积。例3.把20分米长的线段分成两段,并且在每
16、一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米? 变式训练1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。这块地原来的面积是多少平方米?2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。原来正方形的面积是多少平方厘米?3.有一个正方形草坪,沿草坪四周向外修建一米宽的小路,路面面积是80平方米。求草坪的面积。 例4.有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来。 变式训练1.四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49平方
17、米和4平方米,求其中一个长方形的宽。2.如图的每条边都垂直于与它相邻的边,并且28条边的长都相等。如果此图的周长是56厘米,那么,这个图形的面积是多少?3,正图中,正方形ABCD的边长4厘米,求长方形EFGD的面积。例5.有一个周长是72厘米的长方形,它是由三个大小相等的正方形拼成的。一个正方形的面积是多少平方厘米?变式训练1.五个同样大小的正方形拼成一个长方形,这个长方形的周长是36厘米,求每个正方形的面积是多少平方厘米?2.有一张长方形纸,长12厘米,宽10厘米。从这张纸上剪下一个最大的正方形后,剩下部分的周长是多少厘米?3.有一个小长方形,它和一个正方形拼成了一个大长方形ABCD(如下图
18、),已知大长方形的面积是35平方厘米,且周长比原来小长方形的周长多10厘米。求原来小长方形的面积。第5讲 分类数图形专题简析:我们在数数的时候,遵循不重复、不遗漏的原则,不能使数出的结果准确。但是在数图形的个数的时候,往往就不容易了。分类数图形的方法能够帮助我们找到图形的规律,从而有秩序、有条理并且正确地数出图形的个数。例1.下面图形中有多少个正方形?变式训练1.下图中共有多少个正方形?2.下图中共有多少个正方形?3.下图中共有多少个正方形,多少个三角形?例2.下图中共有多少个三角形?变式训练1.下面图中共有多少个三角形?2.数一数,图中共有多少个三角形。3.数一数,图中共有多少个三角形?例3
19、.数出下图中所有三角形的个数。变式训练1.数出下面图形中分别有多少个三角形。例4.如下图,平面上有12个点,可任意取其中四个点围成一个正方形,这样的正方形有多少个?变式训练1.下图中共有8个点,连接任意四点围成一个长方形,一共能围成多少个长方形?2.下图中共有6个点,连接其中的三点围成一个三角形,一共能围成多少个三角形?3.下图中共有9个点,连接其中的四个点围成一个梯形,一共能围成多少个梯形?例5.数一数,下图中共有多少个三角形?变式训练1.图中共有( )个三角形。2.图中共有( )个三角形。3.图中共有( )个正方形。第6讲 尾数和余数专题简析:自然数末位的数字称为自然数的尾数;除法中,被除
20、数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。例1.写出除213后余3的全部两位数。变式训练1.写出除109后余4的全部两位数。2. 178除以一个两位数后余数是3,适合条件的两位数有哪些?3.写出除1290后余3的全部三位数。例2.(1)125125125125100个25积的尾数是几? (2)(2126)(2126)(2126)100个(2126)积的尾数是几?变式训练1. 2121212150个21积的尾数是几?2. 1.51.51.51.5200个1.5积的尾数是几?3. (1263)(1263)(1263)(1263)10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 举一反三 年级 40 完整版 学生
限制150内