BP神经网络的Matlab语法介绍(共4页).doc
《BP神经网络的Matlab语法介绍(共4页).doc》由会员分享,可在线阅读,更多相关《BP神经网络的Matlab语法介绍(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 1. 数据预处理 在训练神经网络前一般需要对数据进行预处理,一种重要的预处理手段是归一化处理。下面简要介绍归一化处理的原理与方法。(1) 什么是归一化?数据归一化,就是将数据映射到0,1或-1,1区间或更小的区间,比如(0.1,0.9) 。(2) 为什么要归一化处理?输入数据的单位不一样,有些数据的范围可能特别大,导致的结果是神经网络收敛慢、训练时间长。数据范围大的输入在模式分类中的作用可能会偏大,而数据范围小的输入作用就可能会偏小。由于神经网络输出层的激活函数的值域是有限制的,因此需要将网络训练的目标数据映射到激活函数的值域。例如神经网络的输出层若采用S形激活函数
2、,由于S形函数的值域限制在(0,1),也就是说神经网络的输出只能限制在(0,1),所以训练数据的输出就要归一化到0,1区间。S形激活函数在(0,1)区间以外区域很平缓,区分度太小。例如S形函数f(X)在参数a=1时,f(100)与f(5)只相差0.0067。(3) 归一化算法一种简单而快速的归一化算法是线性转换算法。线性转换算法常见有两种形式: y = ( x - min )/( max - min )其中min为x的最小值,max为x的最大值,输入向量为x,归一化后的输出向量为y 。上式将数据归一化到 0 , 1 区间,当激活函数采用S形函数时(值域为(0,1))时这条式子适用。 y = 2
3、 * ( x - min ) / ( max - min ) - 1 这条公式将数据归一化到 -1 , 1 区间。当激活函数采用双极S形函数(值域为(-1,1))时这条式子适用。(4) Matlab数据归一化处理函数Matlab中归一化处理数据可以采用premnmx , postmnmx , tramnmx 这3个函数。 premnmx语法:pn,minp,maxp,tn,mint,maxt = premnmx(p,t)参数:pn: p矩阵按行归一化后的矩阵minp,maxp:p矩阵每一行的最小值,最大值tn:t矩阵按行归一化后的矩阵mint,maxt:t矩阵每一行的最小值,最大值作用:将矩阵
4、p,t归一化到-1,1 ,主要用于归一化处理训练数据集。 tramnmx语法:pn = tramnmx(p,minp,maxp)参数:minp,maxp:premnmx函数计算的矩阵的最小,最大值pn:归一化后的矩阵作用:主要用于归一化处理待分类的输入数据。 postmnmx语法: p,t = postmnmx(pn,minp,maxp,tn,mint,maxt)参数:minp,maxp:premnmx函数计算的p矩阵每行的最小值,最大值mint,maxt:premnmx函数计算的t矩阵每行的最小值,最大值作用:将矩阵pn,tn映射回归一化处理前的范围。postmnmx函数主要用于将神经网络的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- BP 神经网络 Matlab 语法 介绍
限制150内