中考复习专题二次函数经典分类讲解复习以及练习题-(-含答案).doc
《中考复习专题二次函数经典分类讲解复习以及练习题-(-含答案).doc》由会员分享,可在线阅读,更多相关《中考复习专题二次函数经典分类讲解复习以及练习题-(-含答案).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1、二次函数的定义定义: y=ax bx c ( a 、 b 、 c 是常数, a 0 ) 定义要点:a 0 最高次数为2 代数式一定是整式练习:1、y=-x,y=2x-2/x,y=100-5 x,y=3 x-2x+5,其中是二次函数的有_个。2.当m_时,函数y=(m+1) - 2+1 是二次函数?2、二次函数的图像及性质抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a0)y=ax2+bx+c(a0,开口向上a0,开口向下在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称
2、轴的右侧, y随着x的增大而减小. xy0xy0例2:已知二次函数(1)求抛物线开口方向,对称轴和顶点M的坐标。(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。(3)x为何值时,y随的增大而减少,x为何值时,y有最大(小)值,这个最大(小)值是多少?(4)x为何值时,y0?3、求抛物线解析式的三种方法1、一般式:已知抛物线上的三点,通常设解析式为_y=ax2+bx+c(a0) 2,顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_求出表达式后化为一般形式.y=a(x-h)2+k(a0) 3,交点式:已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通
3、常设解析式为_求出表达式后化为一般形式.y=a(x-x1)(x-x2) (a0)练习:根据下列条件,求二次函数的解析式。(1)、图象经过(0,0), (1,-2) , (2,3) 三点;(2)、图象的顶点(2,3), 且经过点(3,1) ;(3)、图象经过(0,0), (12,0) ,且最高点的纵坐标是3 。例1已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:二次函数的最大值是2抛物线的顶点纵坐标为2又抛物线的顶点在直线y=x+1上当y=2时,x=1 顶点坐标为( 1 , 2)设二次函数的解析式为y=a(x-1)2+2又图
4、象经过点(3,-6)-6=a (3-1)2+2 a=-2二次函数的解析式为y=-2(x-1)2+2即: y=-2x2+4x4、a,b,c符号的确定抛物线y=ax2+bx+c的符号问题:(1)a的符号:由抛物线的开口方向确定(2)C的符号:由抛物线与y轴的交点位置确定.(3)b的符号:由对称轴的位置确定(4)b2-4ac的符号:由抛物线与x轴的交点个数确定(5)a+b+c的符号:因为x=1时,y=a+b+c,所以a+b+c的符号由x=1时,对应的y值决定。当x=1时,y0,则a+b+c0当x=1时,y0,则a+b+c0,则a-b+c0当x=-1,y0,则a-b+c0当x=-1,y=0,则a-b+
5、c=0练习、二次函数y=ax2+bx+c(a0)的图象如图所示,则a、b、c的符号为() A、a0,c0 B、a0,c0 C、a0,b0 D、a0,b0,c0,b0,c=0 B、a0,c=0 C、a0,b0,c0,b0,b=0,c0,0 B、a0,c0,b=0,c0 D、a0,b=0,c0,0,b0,c 0(2)有一个交点b2 4ac= 0(3)没有交点 b2 4ac 0若抛物线y=ax2+bx+c与x轴有交点,则b2 4ac 0例(1)如果关于x的一元二次方程 x2-2x+m=0有两个相等的实数根,则m=,此时抛物线 y=x2-2x+m与x轴有个交点.(2)已知抛物线 y=x2 8x +c的
6、顶点在 x轴上,则c=.(3)一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是.判别式:b2-4ac二次函数y=ax2+bx+c(a0)图象一元二次方程ax2+bx+c=0(a0)的根b2-4ac0与x轴有两个不同的交点(x1,0)(x2,0)xyO有两个不同的解x=x1,x=x2b2-4ac=0与x轴有唯一个交点xyO有两个相等的解x1=x2=b2-4ac0与x轴没有交点xyO没有实数根7二次函数的综合运用1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在直线x=1上,且顶点到x
7、轴的距离为5,请写出满足此条件的抛物线的解析式.解:Q抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同 a=1或-1 又Q顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,-5) 所以其解析式为: (1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5 展开成一般式即可.2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下平移 4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式.分析:(1)由a+b+c=0可知,原抛物线的图象经过(1,0)(2) 新抛
8、物线向右平移5个单位, 再向上平移4个单位即得原抛物线练习题1直线y3 x1与yxk 的交点在第四象限,则k 的范围是( )(A)k (B)k1 (C)k1 (D)k1或k1【提示】由,解得因点在第四象限,故0,0 k1【答案】B【点评】本题应用了两函数图象交点坐标的求法,结合了不等式组的解法、象限内点的坐标符号特征等2二次函数yax2bxc 的图象如图,则下列各式中成立的个数是( )(1)abc0; (2)abc0; (3)acb; (4)a(A)1 (B)2 (C)3 (D)4【提示】由图象知a0,0,故b0,而c0,则abc0当x1时,y0,即acb0;当x1时,y0,即acb0【答案】
9、B【点评】本题要综合运用抛物线性质与解析式系数间的关系因a0,把(4)a两边同除以a,得1,即1,所以(4)是正确的;也可以根据对称轴在x1的左侧,判断出1,两边同时乘a,得a,知(4)是正确的3若一元二次方程x22 xm0无实数根,则一次函数y(m1)xm1的图象不经过( )(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限【提示】由D 44 m0,得m10,则m10,直线过第二、三、四象限【答案】A【点评】本题综合运用了一元二次方程根的判别式及一次函数图象的性质注意,题中问的是一次函数图象不经过的象限4如图,已知A,B 是反比例函数y的图象上两点,设矩形APOQ 与矩形MONB
10、 的面积为S1,S2,则( )(A)S1S2 (B)S1S2 (C)S1S2 (D)上述(A)、(B)、(C)都可能【提示】因为SAPOQ|k|2,SMONB2,故S1S2【答案】A【点评】本题可以推广为:从双曲线上任意一点向两坐标轴引垂线,由这点及两个垂足和原点构成的矩形的面积都等于|k|5若点A(1,y1),B(2,y2),C(p,y3)在反比例函数y的图象上,则( )(A)y1y2y3 (B)y1y2y3 (C)y1y2y3 (D)y1y3y2【提示】因(k21)0,且(k21)y12 y2p y3,故y1y2y3或用图象法求解,因(k21)0,且x 都大于0,取第四象限的一个分支,找到
11、在y 轴负半轴上y1,y2,y3 的相应位置即可判定【答案】B【点评】本题是反比例函数图象的性质的应用,图象法是最常用的方法在分析时应注意本题中的(k21)06直线yaxc 与抛物线yax2bxc 在同一坐标系内大致的图象是( )(A) (B) (C) (D)【提示】两个解析式的常数项都为c,表明图象交于y 轴上的同一点,排除(A),(B)再从a 的大小去判断【答案】D【点评】本题综合运用了一次函数、二次函数的性质(B)错误的原因是由抛物线开口向上,知a0,此时直线必过第一、三象限7已知函数yx21840 x1997与x 轴的交点是(m,0)(n,0),则(m21841 m1997)(n218
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 复习 专题 二次 函数 经典 分类 讲解 以及 练习题 答案
限制150内