二次函数综合题及答案(共33页).doc
《二次函数综合题及答案(共33页).doc》由会员分享,可在线阅读,更多相关《二次函数综合题及答案(共33页).doc(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数综合题一解答题(共14小题)1(2013重庆)如图,对称轴为直线x=1的抛物线y=ax2+bx+c(a0)与x轴相交于A、B两点,其中点A的坐标为(3,0)(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点若点P在抛物线上,且SPOC=4SBOC求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值2(2013重庆)如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作M
2、Ny轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标3(2013昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a0)上(1)求抛物线的解析式(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,求出所有满足PODNOB的点P的坐标(点P、O、D分别与点N、O
3、、B对应)4(2013张家界)如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45所得直线与抛物线相交于另一点E,求证:CEQCDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由5(2013枣庄)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0)
4、,与y轴交于C(0,3)点,点P是直线BC下方的抛物线上一动点(1)求这个二次函数的表达式(2)连接PO、PC,并把POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积6(2013营口)如图,抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D(1)求该抛物线的解析式与顶点D的坐标(2)试判断BCD的形状,并说明理由(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与
5、BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由7(2013雅安)如图,已知抛物线y=ax2+bx+c经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由8(2013新疆)如图,已知抛物线y=ax
6、2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3)(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求ACE的最大面积及E点的坐标9(2013湘西州)如图,已知抛物线y=x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(2,0)(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)试判断AOC与CO
7、B是否相似?并说明理由;(4)在抛物线的对称轴上是否存在点Q,使ACQ为等腰三角形?若不存在,求出符合条件的Q点坐标;若不存在,请说明理由10(2013湘潭)如图,在坐标系xOy中,ABC是等腰直角三角形,BAC=90,A(1,0),B(0,2),抛物线y=x2+bx2的图象过C点(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l当l移动到何处时,恰好将ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由11(2013遂宁)如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0
8、,)直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DEy轴于点E探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PNAD于点N,设PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值12(2013曲靖)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=x2+bx+c点D为
9、线段AB上一动点,过点D作CDx轴于点C,交抛物线于点E(1)求抛物线的解析式(2)当DE=4时,求四边形CAEB的面积(3)连接BE,是否存在点D,使得DBE和DAC相似?若存在,求此点D坐标;若不存在,说明理由13(2013黔西南州)如图,已知抛物线经过A(2,0),B(3,3)及原点O,顶点为C(1)求抛物线的函数解析式(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标(3)P是抛物线上第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与BOC相似?若存在,求出点P的坐标;若不存在,请说明理由14
10、(2013攀枝花)如图,抛物线y=ax2+bx+c经过点A(3,0),B(1.0),C(0,3)(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DEx轴于点E,在y轴上是否存在点M,使得ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由2013年10月陈永的初中数学组卷参考答案与试题解析一解答题(共14小题)1(2013重庆)如图,对称轴为直线x=1的抛物线y=ax2+bx+c(a0)与x轴相交于A、B两点,其中点A的坐标为(3,0)(1)求点B的坐标;(2)已知a=1,C为抛物
11、线与y轴的交点若点P在抛物线上,且SPOC=4SBOC求点P的坐标;设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值考点:二次函数综合题专题:压轴题分析:(1)由抛物线y=ax2+bx+c的对称轴为直线x=1,交x轴于A、B两点,其中A点的坐标为(3,0),根据二次函数的对称性,即可求得B点的坐标;(2)a=1时,先由对称轴为直线x=1,求出b的值,再将B(1,0)代入,求出二次函数的解析式为y=x2+2x3,得到C点坐标,然后设P点坐标为(x,x2+2x3),根据SPOC=4SBOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;先运用待定系数法求出直线AC
12、的解析式为y=x3,再设Q点坐标为(x,x3),则D点坐标为(x,x2+2x3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值解答:解:(1)对称轴为直线x=1的抛物线y=ax2+bx+c(a0)与x轴相交于A、B两点,A、B两点关于直线x=1对称,点A的坐标为(3,0),点B的坐标为(1,0);(2)a=1时,抛物线y=x2+bx+c的对称轴为直线x=1,=1,解得b=2将B(1,0)代入y=x2+2x+c,得1+2+c=0,解得c=3则二次函数的解析式为y=x2+2x3,抛物线与y轴的交点C的坐标为(0,3),OC=3设P点坐标为(x,x2+2x3),SPOC
13、=4SBOC,3|x|=431,|x|=4,x=4当x=4时,x2+2x3=16+83=21;当x=4时,x2+2x3=1683=5所以点P的坐标为(4,21)或(4,5);设直线AC的解析式为y=kx+t,将A(3,0),C(0,3)代入,得,解得,即直线AC的解析式为y=x3设Q点坐标为(x,x3)(3x0),则D点坐标为(x,x2+2x3),QD=(x3)(x2+2x3)=x23x=(x+)2+,当x=时,QD有最大值点评:此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题此题难度适中,解题的关键是运用方程思想与数形结合思想2(2013重庆)如图
14、,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MNy轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,ABN的面积为S2,且S1=6S2,求点P的坐标考点:二次函数综合题专题:压轴题分析:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,运用待定系数法即可求出直线BC的解析式;同
15、理,将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)MN的长是直线BC的函数值与抛物线的函数值的差,据此可得出一个关于MN的长和M点横坐标的函数关系式,根据函数的性质即可求出MN的最大值;(3)先求出ABN的面积S2=5,则S1=6S2=30再设平行四边形CBPQ的边BC上的高为BD,根据平行四边形的面积公式得出BD=3,过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形证明EBD为等腰直角三角形,则BE=BD=6,求出E的坐标为(1,0),运用待定系数法求出直线PQ的解析式
16、为y=x1,然后解方程组,即可求出点P的坐标解答:解:(1)设直线BC的解析式为y=mx+n,将B(5,0),C(0,5)两点的坐标代入,得,解得,所以直线BC的解析式为y=x+5;将B(5,0),C(0,5)两点的坐标代入y=x2+bx+c,得,解得,所以抛物线的解析式为y=x26x+5;(2)设M(x,x26x+5)(1x5),则N(x,x+5),MN=(x+5)(x26x+5)=x2+5x=(x)2+,当x=时,MN有最大值;(3)MN取得最大值时,x=2.5,x+5=2.5+5=2.5,即N(2.5,2.5)解方程x26x+5=0,得x=1或5,A(1,0),B(5,0),AB=51=
17、4,ABN的面积S2=42.5=5,平行四边形CBPQ的面积S1=6S2=30设平行四边形CBPQ的边BC上的高为BD,则BCBDBC=5,BCBD=30,BD=3过点D作直线BC的平行线,交抛物线与点P,交x轴于点E,在直线DE上截取PQ=BC,则四边形CBPQ为平行四边形BCBD,OBC=45,EBD=45,EBD为等腰直角三角形,BE=BD=6,B(5,0),E(1,0),设直线PQ的解析式为y=x+t,将E(1,0)代入,得1+t=0,解得t=1直线PQ的解析式为y=x1解方程组,得,点P的坐标为P1(2,3)(与点D重合)或P2(3,4)点评:本题是二次函数的综合题,其中涉及到运用待
18、定系数法求一次函数、二次函数的解析式,二次函数的性质,三角形的面积,平行四边形的判定和性质等知识点,综合性较强,考查学生运用方程组、数形结合的思想方法(2)中弄清线段MN长度的函数意义是关键,(3)中确定P与Q的位置是关键3(2013昭通)如图1,已知A(3,0)、B(4,4)、原点O(0,0)在抛物线y=ax2+bx+c (a0)上(1)求抛物线的解析式(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个交点D,求m的值及点D的坐标(3)如图2,若点N在抛物线上,且NBO=ABO,则在(2)的条件下,求出所有满足PODNOB的点P的坐标(点P、O、D分别与点N、O、B对应)考点
19、:二次函数综合题专题:压轴题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线AB的解析式,进而由P1ODNOB,得出P1ODN1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标解答:解:(1)A(3,0)、B(4,4)、O(0,0)在抛物线y=ax2+bx+c (a0)上,解得:,故抛物线的解析式为:y=x23x;(2)设直线OB的解析式为y=k1x( k10),由点B(4,4)得4=4 k1,解得k1=1直线OB的解析式为y=x,AOB=45B(4,4),点B向下
20、平移m个单位长度的点B的坐标为(4,0),故m=4平移m个单位长度的直线为y=x4解方程组 解得:,点D的坐标为(2,2)(3)直线OB的解析式y=x,且A(3,0)点A关于直线OB的对称点A的坐标为(0,3)设直线AB的解析式为y=k2x+3,此直线过点B(4,4)4k2+3=4,解得 k2=直线AB的解析式为y=x+3NBO=ABO,点N在直线AB上,设点N(n,n+3),又点N在抛物线y=x23x上,n+3=n23n解得 n1=,n2=4(不合题意,舍去),点N的坐标为(,)如图,将NOB沿x轴翻折,得到N1OB1,则 N1 (,),B1(4,4)O、D、B1都在直线y=x上P1ODNO
21、B,P1ODN1OB1,P1为O N1的中点=,点P1的坐标为(,)将P1OD沿直线y=x翻折,可得另一个满足条件的点到x轴距离等于P1到y轴距离,点到y轴距离等于P1到x轴距离,此点坐标为:(,)综上所述,点P的坐标为(,)和(,)点评:此题主要考查了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键4(2013张家界)如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 综合 答案 33
限制150内