低温等离子原理与应用(共6页).doc
《低温等离子原理与应用(共6页).doc》由会员分享,可在线阅读,更多相关《低温等离子原理与应用(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上低温等离子体技术在环境工程中的应用:低温等离子体技术在废气处理中的应用随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多,这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染,这些废气吸入*,直接对*的健康产生极大的危害;另外工业烟气的无控制排放使全球性的大气环境日益恶化,酸雨(主要来源于工业排放的硫氧化物和氮氧化物)的危害引起了各国的重视。由于大气受污染而酸化,导致了生态环境的破坏,重大灾难频繁发生,给人类造成了巨大损失。因此选择一种经济、可行性强的处理方法势在必行。降解挥发性有机污染物(VOCs)
2、传统的处理方法如吸收、吸附、冷凝和燃烧等,对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学及真空技术等基础学科之上的交叉学科。因此,目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术。是否是低温等离子体处理技术的简单判断方法:现在,各传媒上宣传低温等离子废气处理的产品和技术很多,可这些产品的宣传大部分都是在炒低温等离子体概念。如何判断是否是真正意义上的低温等离子体技术?
3、可以用下面两个简单的规则来判断,即使你不懂低温等离子体技术也能判断出是真是假。(1)在废气处理的通道上必须充满了低温等离子体。这条规则判断很简单,只要用眼睛观察一下处理通道是否充满紫蓝色的放电就可以直观的了解是否是低温等离子体了(需要注意的是不要将各种颜色的灯光当作电离子体放电)。如果在废气处理的通道上只零星的分布若干的放电点或线,则处理的效果是非常有限的,因为,大部分的(VOCs)气体没有进过低温等离子体处理区域。(2)低温等离子体处理系统必须要有一定的放电处理功率。通常需要在25瓦时/米3。即1000米3/时的风量需要处理的电功率为2KW5KW。如果号称1000米3/时的风量只需要几十或几
4、百瓦的电功率,则最多也就是静电(除尘)处理或局部处理而已。要想分解VOCs没有一定的能量是不可能的。等离子体技术目前采用的有四类技术,介质阻挡放电(双介质、单介质)、尖端放电(金属、纤维)、板式放电、微波放电,实际应用也有采用组合模式。一:介质阻挡放电将绝缘介质插入放电空间的一种气体放电。介质可以覆盖在电极上,也可以悬挂在放电空间里,当在放电电极间施加一定频率(50MHz至几K赫兹)的-Kv的交流电压时,电极间的气体就会被击穿产生碳阻挡气体放电。在大气压或高于大气压条件下,间隙内的气体放电由许多在时间上和空间上随机分布的微放电构成,这些微放电的持续时间很短,一般为纳秒量级20。由实验观察,微放
5、电通常呈现一些相当均匀的圆柱型微通道,每一个微通道就是一个强烈的流光放电击穿过程,带电粒子的输运过程及等离子体化学反应就发生在这些微放电通道内.因此一些研究者将微放电作为碳等离子体的主要特性,并通过研究微放电的性质来研究碳等离子体的整体特性。从碳的物理过程来看,电源电压通过电介质电容耦合到放电间隙形成电场,空间电子在这一电场作用下获得能量,与周围气体发生非弹性碰撞,电子从外加电场取得能量转移给气体分子,气体被激励后,发生电子雪崩,出现了相当数量的空间电荷。它们聚集在雪崩头部,形成本征电,再与外加电场叠加起来形成很高的局部电场,在新形成的局部电场作用下,雪崩中的电子得到进一步加速,使放电间隙的电
6、子形成空间电荷的速度比电子迁移速度更快,形成了往返两个电场波,电场波向阴极方向返回时更强,这样一个导电通道能非常快地通过放电间隙形成大量微细丝状的脉冲流光微放电.它们很均匀、漫散和稳定,彼此孤立地随机发生在不同地点,当微放电通道形成以后,空间电荷就在通道内输送累积在电介质表面产生反向电场而使放电熄灭,形成微放电脉冲。在一定范围内,微放电的数量随供电电压及频率的增加而增加.可见碳介质的分布电容对于微放电的形成起着十分重要的镇流作用.一方面,由于电介质的存在,有效地限制了带电粒子的运动,防止了放电电流的无限制增长,从而避免了在放电间隙内形成火花放电或弧光放电;另一方面,电介质的存在可以使微放电均匀
7、稳定地分布在整个放电空间内。二:组合模式本工艺在电催化总的设计概念下,分三个即独立又混成的激发系统:微波激发区、等离子激发区、极板激发去。每个激发区有它特定的功能,但在原理上有它相似的地方。1:微波激发区本工艺有3至9个微波激发单位,根据被处理风量的不同数量不同,微波由于它的频率相对比较高,在纳秒的时间内有效作用于被处理空间(区域),由于微波的功率相对较小,因此在激发能力上也就是说电子的获能跃迁能力上有限,本设计只是把微波作为初频激发源,在处理过程中作为一种预激发能。由于微波的预激功能,极大的提高等离子体区,极板区的激发能力和处理效果,由于微波技术的运用,本工艺在同类设备的比较中显得设备精炼而
8、效果优越。2:低温等离子体激发本工艺有40支至240支充有特殊气体的无极管组成的低温等离子体激发区,低温等离子体区是工艺的核心技术,国外诸多科研机构室称在常压下实现低温等离子体。从大量的试验分析,常压低温等离子体要在工业中应用存在的困难仍旧很大,本工艺借助低气压的无极灯作为低温等离子体的激发体,最大限度地在无极管区实现低温等离子体区,由于低温等离子体在能量跃迁过程中具有极强的能量平衡性,在粒子撞击中失能极少,所以低温等离子体作为原子激发是最理想的一种能。在实践应用中,最大的科题在于低气压究竟是多少帕?管内充什么样的气体最有经济价值?这没有理论模型可言,只有通过实践、实验、分析。3:极板区根据被
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 低温 等离子 原理 应用
限制150内