高一数学教案:函数及其表示(共9页).doc
《高一数学教案:函数及其表示(共9页).doc》由会员分享,可在线阅读,更多相关《高一数学教案:函数及其表示(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一课时: 1.2.1 函数的概念(一)教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。教学过程:一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2 .回顾初中函数的定义:在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变
2、量. 表示方法有:解析法、列表法、图象法.二、讲授新课:1.教学函数模型思想及函数概念:给出三个实例: A.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是. B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图) C.国际上常用恩格尔系数(食物支出金额总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表)讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共
3、同点? 归纳:三个实例变量之间的关系都可以描述为,对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作:定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:. 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range).讨论:值域与B的关系?构成函数的三要素?一次函数、二次函数的定义域与值域?练习:,求f(0)、f(1)、f(2)、f(1)的值。求值域.2.教学区间及写法
4、: 概念:设a、b是两个实数,且ab,则:x|axba,b 叫闭区间; x|axb(a,b) 叫开区间;x|axba,b) ; x|aa、x|xb、x|xb 用区间表示:函数y的定义域 ,值域是 。 (观察法)3.小结:函数模型应用思想;函数概念;二次函数的值域;区间表示三、巩固练习: 1. 已知函数f(x)=3x5x2,求f(3)、f(-)、f(a)、f(a+1)2. 探究:举例日常生活中函数应用模型的实例. 什么样的曲线不能作为函数的图象?3. 课堂作业:书P21 1、2题.第二课时: 1.2.1 函数的概念(二)教学要求:会求一些简单函数的定义域与值域,并能用“区间”的符号表示;掌握判别
5、两个函数是否相同的方法。教学重点:会求一些简单函数的定义域与值域。教学难点:值域求法。教学过程:一、复习准备:1. 提问:什么叫函数?其三要素是什么?函数y与y3x是不是同一个函数?为什么?2. 用区间表示函数ykxb、yaxbxc、y的定义域与值域.二、讲授新课:1.教学函数定义域:出示例1:求下列函数的定义域(用区间表示) f(x)=; f(x)=; f(x)=学生试求订正小结:定义域求法(分式、根式、组合式)练习:求定义域(用区间) f(x); f(x)小结:求定义域步骤:列不等式(组) 解不等式(组)2.教学函数相同的判别:讨论:函数y=x、y=()、y=、y=、y=有何关系?练习:判
6、断下列函数f(x)与g(x)是否表示同一个函数,说明理由?A. f ( x ) = (x 1) 0;g ( x ) = 1 ; B. f ( x ) = x; g ( x ) = Cf ( x ) = x 2;f ( x ) = (x + 1) 2 、D. f ( x ) = | x | ;g ( x ) = 小结:函数是否相同,看定义域和对应法则。3.教学函数值域的求法: 例2:求值域(用区间表示):yx2x4;y;f(x) ;f(x)先口答前面三个 变第三个求 如何利用第二个来求第四个小结求值域的方法: 观察法、配方法、拆分法、基本函数法三、巩固练习: 1.求下列函数定义域:;2. 已知f
7、(x+1)2x3x1,求f(-1)。 变:,求f(f(x) 解法一:先求f(x),即设x1t;(换元法) 解法二:先求f(x),利用凑配法; 解法三:令x1=1,则x2,再代入求。(特殊值法)3.f(x)的定义域是0,1,则f(xa)的定义域是 。4.求函数yx4x1 ,x-1,3) 在值域。 解法(数形结合法):画出二次函数图像 找出区间 观察值域5.课堂作业:书P27 1、2、3题。第三课时: 1.2.2 函数的表示法(一)教学要求:明确函数的三种表示方法(解析法、列表法、图像法),了解三种表示方法各自的优点,在实际情境中,会根据不同的需要选择恰当的方法表示函数。通过具体实例,了解简单的分
8、段函数,并能简单应用。教学重点:会根据不同的需要选择恰当的方法表示函数。教学难点:分段函数的表示及其图象。教学过程:一、复习准备:1.提问:函数的概念?函数的三要素? 2.讨论:初中所学习的函数三种表示方法?试举出日常生活中的例子说明.二、讲授新课:1.教学函数的三种表示方法: 结合实例说明三种表示法 比较优点 解析法:用数学表达式表示两个变量之间的对应关系. 优点:简明;给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系. 优点:直观形象,反应变化趋势。 列表法:列出表格来表示两个变量之间的对应关系. 优点:不需计算就可看出函数值。 具体实例如:二次函数等;股市走势图; 列车时刻表
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学教案 函数 及其 表示
限制150内