备战2013高考数学(理)6年高考母题精解精析专题03-导数与函数(共140页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《备战2013高考数学(理)6年高考母题精解精析专题03-导数与函数(共140页).doc》由会员分享,可在线阅读,更多相关《备战2013高考数学(理)6年高考母题精解精析专题03-导数与函数(共140页).doc(140页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上【2012年高考试题】一、选择题1.【2012高考真题重庆理8】设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是(A)函数有极大值和极小值 (B)函数有极大值和极小值 (C)函数有极大值和极小值 (D)函数有极大值和极小值【答案】【解析】由图象可知当时,所以此时,函数递增.当时,所以此时,函数递减.当时,所以此时,函数递减.当时,所以此时,函数递增.所以函数有极大值,极小值,选D.2.【2012高考真题新课标理12】设点在曲线上,点在曲线上,则最小值为( ) 【答案】B【解析】函数与函数互为反函数,图象关于对称 函数上的点到直线的距
2、离为 设函数 由图象关于对称得:最小值为,3.【2012高考真题陕西理7】设函数,则( )A. 为的极大值点 B.为的极小值点C. 为的极大值点 D. 为的极小值点学【答案】D.【解析】,令,则,当时,当时,所以为极小值点,故选D.4.【2012高考真题辽宁理12】若,则下列不等式恒成立的是(A) (B) (C) (D)【答案】C【解析】设,则所以所以当时,同理即,故选C5.【2012高考真题湖北理3】已知二次函数的图象如图所示,则它与轴所围图形的面积为A B C D 【答案】B 【解析】根据图像可得: ,再由定积分的几何意义,可求得面积为.6.【2012高考真题全国卷理10】已知函数yx-3
3、x+c的图像与x恰有两个公共点,则c(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1【答案】A【解析】若函数的图象与轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为,令,解得,可知当极大值为,极小值为.由,解得,由,解得,所以或,选A.二、填空题7.【2012高考真题浙江理16】定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=_。【答案】【解析】曲线C2:x2+(y+4)2=2到直线l:y=x的距离为,曲线C1:y=x2+a对应函
4、数的导数为,令得,所以C1:y=x2+a上的点为,点到到直线l:y=x的距离应为,所以,解得或(舍去)。8.【2012高考真题江西理11】计算定积分_。【答案】【解析】。9.【2012高考真题山东理15】设.若曲线与直线所围成封闭图形的面积为,则_.【答案】【解析】由已知得,所以,所以。10.【2012高考真题广东理12】曲线y=x3-x+3在点(1,3)处的切线方程为 【答案】【解析】,当时,此时,故切线方程为,即。11.【2012高考真题上海理13】已知函数的图象是折线段,其中、,函数()的图象与轴围成的图形的面积为 。【答案】【解析】当,线段的方程为,当时。线段方程为,整理得,即函数,所
5、以,函数与轴围成的图形面积为。12.【2012高考真题陕西理14】设函数,是由轴和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 .【答案】2【解析】函数在点处的切线为,即.所以D表示的平面区域如图当目标函数直线经过点M时有最大值,最大值为.三、解答题13.【2012高考真题广东理21】(本小题满分14分)设a1,集合,。(1)求集合D(用区间表示);(2)求函数在D内的极值点【答案】本题是一个综合性问题,考查集合与导数的相关知识,考查了学生综合解决问题的能力,难度较大.14.【2012高考真题安徽理19】(本小题满分13分)设。(I)求在上的最小值;(II)设曲线在点的切线方程为
6、;求的值。【答案】本题考查函数、导数的基础知识,运用导数研究函数性质等基本方法,考查分类讨论思想,代数恒等变形能力和综合运用数学知识分析问题解决问题的能力。【解析】(I)设;则,当时,在上是增函数,得:当时,的最小值为。当时,当且仅当时,的最小值为。(II),由题意得:。15.【2012高考真题福建理20】(本小题满分14分)已知函数f(x)=exax2-ex,aR. ()若曲线y=f(x)在点(1,f(1)处的切线平行于x轴,求函数f(x)的单调区间;()试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P. 【答案】本题主要考查函数导数的应用、
7、二次函数的性质、函数零点的存在性定理等基础知识,考查推理论证能力、基本运算能力、抽象概括能力,以及分类与整合思想、数形结合思想、化归与转化思想.16.【2012高考真题北京理18】(本小题共13分)【答案】解:(1)由为公共切点可得:,则,则,又,即,代入式可得:(2),设则,令,解得:,;,原函数在单调递增,在单调递减,在上单调递增若,即时,最大值为;若,即时,最大值为若时,即时,最大值为综上所述:当时,最大值为;当时,最大值为17.【2012高考真题新课标理21】(本小题满分12分)已知函数满足满足;(1)求的解析式及单调区间;(2)若,求的最大值.【答案】(1) 令得: 得: 在上单调递
8、增 得:的解析式为 且单调递增区间为,单调递减区间为 (2)得 当时,在上单调递增 时,与矛盾 当时, 得:当时, 令;则 当时, 当时,的最大值为18.【2012高考真题天津理20】本小题满分14分)已知函数的最小值为0,其中()求的值;()若对任意的有成立,求实数的最小值;()证明().【答案】19.【2012高考江苏18】(16分)若函数在处取得极大值或极小值,则称为函数的极值点。已知是实数,1和是函数的两个极值点(1)求和的值;(2)设函数的导函数,求的极值点;(3)设,其中,求函数的零点个数【答案】解:(1)由,得。 1和是函数的两个极值点, ,解得。 (2) 由(1)得, , ,解
9、得。 当时,;当时, 是的极值点。 当或时, 不是的极值点。 的极值点是2。(3)令,则。 先讨论关于 的方程 根的情况:当时,由(2 )可知,的两个不同的根为I 和一2 ,注意到是奇函数,的两个不同的根为一和2。当时, ,一2 , 1,1 ,2 都不是的根。由(1)知。 当时, ,于是是单调增函数,从而。此时在无实根。 当时,于是是单调增函数。又,的图象不间断, 在(1 , 2 )内有唯一实根。同理,在(一2 ,一I )内有唯一实根。 当时,于是是单调减两数。又, ,的图象不间断,在(一1,1 )内有唯一实根。因此,当时,有两个不同的根满足;当 时有三个不同的根,满足。现考虑函数的零点:(
10、i )当时,有两个根,满足。而有三个不同的根,有两个不同的根,故有5 个零点。( 11 )当时,有三个不同的根,满足。而有三个不同的根,故有9 个零点。综上所述,当时,函数有5 个零点;当时,函数有9 个零点。【解析】(1)求出的导数,根据1和是函数的两个极值点代入列方程组求解即可。 (2)由(1)得,求出,令,求解讨论即可。 (3)比较复杂,先分和讨论关于 的方程 根的情况;再考虑函数的零点。20.【2012高考真题辽宁理21】本小题满分12分)设,曲线与直线在(0,0)点相切。 ()求的值。 ()证明:当时,。【答案】21.【2012高考真题重庆理16】(本小题满分13分,()小问6分,(
11、)小问7分.)设其中,曲线在点处的切线垂直于轴.() 求的值;()求函数的极值. 【答案】22.【2012高考真题浙江理22】(本小题满分14分)已知a0,bR,函数()证明:当0x1时,()函数的最大值为|2ab|a;() |2ab|a0;() 若11对x0,1恒成立,求ab的取值范围【答案】本题主要考察不等式,导数,单调性,()()当b0时,0在0x1上恒成立,此时的最大值为:|2ab|a;当b0时,在0x1上的正负性不能判断,此时的最大值为:|2ab|a;综上所述:函数在0x1上的最大值为|2ab|a;() 要证|2ab|a0,即证|2ab|a亦即证在0x1上的最大值小于(或等于)|2a
12、b|a,令当b0时,0在0x1上恒成立,此时的最大值为:|2ab|a;当b0时,在0x1上的正负性不能判断,|2ab|a;综上所述:函数在0x1上的最大值小于(或等于)|2ab|a即|2ab|a0在0x1上恒成立()由()知:函数在0x1上的最大值为|2ab|a,且函数在0x1上的最小值比(|2ab|a)要大11对x0,1恒成立,|2ab|a1取b为纵轴,a为横轴则可行域为:和,目标函数为zab作图如下:由图易得:当目标函数为zab过P(1,2)时,有所求ab的取值范围为:23.【2012高考真题湖南理22】(本小题满分13分)已知函数=,其中a0.若对一切xR,1恒成立,求a的取值集合.(2
13、)在函数的图像上取定两点,记直线AB的斜率为K,问:是否存在x0(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.【答案】()若,则对一切,这与题设矛盾,又,故.而令当时,单调递减;当时,单调递增,故当时,取最小值于是对一切恒成立,当且仅当.令则当时,单调递增;当时,单调递减.故当时,取最大值.因此,当且仅当即时,式成立.综上所述,的取值集合为.()由题意知,令则令,则.当时,单调递减;当时,单调递增.故当,即从而,又所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使单调递增,故这样的是唯一的,且.故当且仅当时, .综上所述,存在使成立.且的取值范围为. 函数与方程一
14、、选择题1.【2012高考真题重庆理7】已知是定义在R上的偶函数,且以2为周期,则“为上的增函数”是“为上的减函数”的(A)既不充分也不必要的条件 (B)充分而不必要的条件 (C)必要而不充分的条件 (D)充要条件 【答案】D【解析】因为为偶函数,所以当在上是增函数,则在上则为减函数,又函数的周期是4,所以在区间也为减函数.若在区间为减函数,根据函数的周期可知在上则为减函数,又函数为偶函数,根据对称性可知,在上是增函数,综上可知,“在上是增函数”是“为区间上的减函数”成立的充要条件,选D.2.【2012高考真题北京理8】某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年
15、的年平均产量最高。m值为( )A.5 B.7 C.9 D.11【答案】C【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C。3.【2012高考真题安徽理2】下列函数中,不满足:的是( ) 【答案】C【命题立意】本题考查函数的概念与解析式的判断。【解析】与均满足:得:满足条件4.【2012高考真题天津理4】函数在区间(0,1)内的零点个数是(A)0 (B)1 (C)2 (D)3【答案】B【解析】因为函数的导数为,所以函数单调递增,又,所以根据根的存在定理可知在区间内函数的零点个数为1个,选B.5.【2012高考真题全国卷理9】已知x=ln,y=log52,则(A)x
16、yz (B)zxy (C)zyx (D)yzx【答案】D【解析】,所以,选D.6.【2012高考真题新课标理10】 已知函数;则的图像大致为( )【答案】B【解析】排除法,因为,排除A.,排除C,D,选B.7.【2012高考真题陕西理2】下列函数中,既是奇函数又是增函数的为( )A. B. C. D. 【答案】D.【解析】根据奇偶性的定义和基本初等函数的性质易知A非奇非偶的增函数;B是奇函数且是减函数;C是奇函数且在,上是减函数;D中函数可化为易知是奇函数且是增函数.故选D.8.【2012高考真题重庆理10】设平面点集,则所表示的平面图形的面积为(A) (B) (C) (D) 【答案】D【解析
17、】由可知或者,在同一坐标系中做出平面区域如图:,由图象可知的区域为阴影部分,根据对称性可知,两部分阴影面积之和为圆面积的一半,所以面积为,选D.9.【2012高考真题山东理3】设且,则“函数在上是减函数 ”,是“函数在上是增函数”的(A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件【答案】A【解析】若函数在R上为减函数,则有。函数为增函数,则有,所以,所以“函数在R上为减函数”是“函数为增函数”的充分不必要条件,选A.10.【2012高考真题四川理3】函数在处的极限是( )A、不存在 B、等于 C、等于 D、等于 【答案】A.【解析】即为,故其在处的极限
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战 2013 高考 数学 年高 考母题精解精析 专题 03 导数 函数 140
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内