《第13章触发器与时序逻辑电路课件.ppt》由会员分享,可在线阅读,更多相关《第13章触发器与时序逻辑电路课件.ppt(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、13.1.1 触发器概述触发器概述 能够存储一位二值(逻辑“0”和逻辑“1”)信号的基本单元电路,统称为触发器。 我们通过图13.1所示基本触发器来介绍几个基本概念。 (a)电路图 (b)符号图13-1 用或非门构成的基本RS触发器 4不定状态 当R、S两个输入信号同时有效时(R=1、S=1),状态不定。显然,若R、S满足RS=0,则能保证输入端不会同时出现高电平。我们将RS=0称为约束条件。 图13.2所示电路为用与非门组成的基本RS触发器,其工作原理请读者自己分析。(a)电路图 (b)符号图13-2 用与非门构成的基本RS触发器13.1.2 触发器的逻辑功能描述触发器的逻辑功能描述 以图1
2、3-1所示的基本RS触发器为例,介绍触发器逻辑功能描述的基本概念和术语。1现态与次态2状态转移真值表置13特征方程特征方程为0n1nRSQRSQ式中,RS=0为约束条件(不允许输入端R、S同时为1)。4状态图图13-3 基本RS触发器的状态图5时序图图13-4 基本RS触发器时序图13.1.3 触发器的分类触发器的分类1D触发器D触发器的特征方程如下:DQ1n状态图如图13.5所示。图13.5 同步D触发器状态图2JK触发器JK触发器特征方程如下: nn1nQKQJQJK触发器状态图。图13.6 JK触发器状态图3T和T/触发器特征方程如下: nn1nQTQTQ逻辑功能如表13.5所示。特征方
3、程如下:n1nQQ13.1.4 触发器的逻辑功能转换触发器的逻辑功能转换 1JK触发器到D、T、T/和RS触发器的转换1)JK触发器转换成D触发器D触发器的特征方程为DQ1nnnnn1n)(DQQDQQDQ比较两者的特征方程可得DKDKDJ图13.7 JK触发器转换为D触发器 2)JK触发器转换成T触发器T触发器的特征方程为nnn1nQTQTQTQ 可直接对JK触发器和T触发器的特征方程进行比较,可得 TKTJ画电路图如图13.8所示。图13.8 JK触发器转换为T触发器3)JK触发器转换成T/触发器T/触发器的特征方程为n1nQQ变换其形式得nnn1n11QQQQ比较JK触发器与T/触发器两
4、者的特征方程可得11KJ画电路图如图13.9所示。图13.9 JK触发器转换为T/触发器4)JK触发器转换成RS触发器RS触发器的特征方程为0n1nRSQRSQ变换其形式RSQRSQQRQSRRSQQRQSQRSQQSQRQQSQRSQnnnnnnnnnnnnnn1n)()(因此可得 RKSJ图13.10 JK触发器转换为RS触发器 3D触发器到JK、T、T/和RS触发器的转换1)D触发器转换成JK触发器比较JK触发器与D触发器的特征方程可知nnQKQJD图13.11 D触发器转换为JK触发器画电路图如图13.11所示。2)D触发器转换成T触发器T触发器的特征方程为n1nQTQ比较T触发器与D
5、触发器的特征方程可得nQTD画电路图如图13.12所示。图13.12 D触发器转换为T触发器3)D触发器转换成T/触发器T触发器的特征方程为n1nQQ比较式T/触发器与D触发器的特征方程,可得nQD 画电路图如图13.13所示。 图13.13 D触发器转换为T/触发器4)D触发器转换成RS触发器RS触发器的特征方程为0n1nRSQRSQ比较式RS触发器与D触发器的特征方程,可得nQRSD可画出其电路如图13.14所示。 图13.14 D触发器转换为RS触发器13.2.1 时序逻辑电路概述时序逻辑电路概述1电路结构用图13.15所示的方框图表示。图13.15 时序电路示意图2时序电路逻辑功能的表
6、示1)方程组),(),(L1i1jjL1i111QQXXFYQQXXFY,),(),(L1i1kkL1i111QQXXGWQQXXGW,),(),(nLnLi1L1n Lnni111n1L1QQXXFQQQXXFQ, 2)状态表:与触发器的状态表相同,只是这里的变量为电路的输入X1Xi、电路的输出Y1Yj、存储电路的驱动W1Wk、电路的原状态Q1nQLn、电路的次态Q1n+1QLn+1。将他们用表格表示,即为状态转换真值表,简称状态表。 3)状态图:与触发器的状态图相同。即在状态图中用小圆圈分别表示电路的各个状态,以箭头表示状态转换的方向,同时在箭头旁边标明电路状态转换的输入值和输出值。通常将
7、输入变量取值在斜线上,输出值在斜线下。 4)时序图:所谓时序图,是根据状态图或状态表的内容绘制成时间波形的形式。即在序列的时钟作用下,电路状态、输出状态随时间变化的波形图称为时序图。 3时序逻辑电路的分类 (1)按照时序电路中所有触发器状态的变化是否同步,时序电路可分为同步时序电路和异步时序电路。若电路中所有触发器的时钟脉冲CP控制信号,都是使用同一个时钟脉冲,这种时序电路称为同步时序电路,否则为异步时序电路。 (2)按照电路输出信号的特点,时序电路又可以分为米利(Mealy)型时序电路和穆尔(Moore)型时序电路。穆尔型时序电路,其电路的输出信号仅取决于存储电路的原状态。其输出方程为)()
8、(L1jjL111QQFYQQFY,13.2.2 同步时序电路的分析方法同步时序电路的分析方法 具体步骤为: 根据给定的时序电路,写出电路的输出方程;写出每个触发器的驱动方程; 将驱动方程代入相应触发器的特征方程,得出每个触发器的状态方程; 找出该时序电路对应的状态表或者状态图,以便直观地看出该时序电路的逻辑功能。 若电路中存在无效状态(即电路未使用的状态),应该检查电路能否自启动; 用文字描述电路的逻辑功能。【例13.1】分析下图所示时序逻辑电路的功能。解:(1)由于该电路所有的触发器都使用同一个时钟脉冲,故为同步时序电路。(2)写出电路的驱动方程、输出方程及状态方程。驱动方程为113n2n
9、13n12n121n31KQQJQKQJKQJ,输出方程为n3QY 代入JK触发器的特征方程中,就可以得出电路的状态方程:n3n2n11n3n2n1n2n1n2n11n2n1n31n1QQQQQQQQQQQQQQ(3)画出电路的状态图 (4)检查电路的自启动:设电路的初始状态为“101”,当脉冲CP到来时将其代入状态方程、输出方程,可以求得输出为“1”,新状态为“010”;类似可以得出电路初态为“110”时,在CP的控制下输出为“1”,新状态为“010”;电路初态为“111”时,在CP脉冲控制下输出为“1”,新状态为“000”;所以电路能够自启动。电路的完整状态图如图13.18所示。 (5)结
10、论:为能够自启动的五进制加法计数器。 通过状态图转换可以写出该电路的状态表,如表13.7所示。 【例13.2】分析下图所示电路的逻辑功能。 解:(1)显然,这是一个米利型的时序电路。它是由两个D触发器组成的同步时序电路。X为电路的输入端,Y为输出端。 (2)写出电路的驱动方程、输出方程及状态方程。驱动方程为XQQDQXDn2n12n21输出方程为 XQQYn2n1电路的状态方程: XQQQQXQn2n11n2n21n1(3)画出电路的状态图。由状态方程可以得出如图13.20所示的状态图。图13.20 例13.2图213.2.3 异步时序电路的分析方法异步时序电路的分析方法 一般来说,异步时序电
11、路的分析步骤如下: 根据给定的时序电路,写出每个触发器的驱动方程(又称激励方程)及时钟方程; 将驱动方程、时钟方程代入相应触发器的特征方程,得出每个触发器的状态方程; 找出该时序电路对应的状态表或状态图,以便直观地看出该时序电路的逻辑功能; 若电路存在无效状态(即电路未使用的状态),应检查电路能否自启动; 用文字描述该时序电路的逻辑功能。【例13.3】分析下图所示电路的逻辑功能。解:(1)该电路穆尔型(无输入信号)异步时序逻辑电路。(2)写出电路的驱动方程、时钟方程、输出方程和状态方程。驱动方程、时钟方程为CPCPQCPCPCPQQDQDQQD3n121n2n13n22n3n11,输出方程为n
12、3QY 电路的状态方程为CPQQCPQQQQQCPQQCPQQCPQQQ)()()()()(n2n13n2n11n3n1n22n21n2n3n11n3n11n1(3)画出电路的状态图。由状态方程可得到如图所示的状态图。 在依次假设电路的初始状态,代入状态方程求出电路的新状态时,要注意每一个方程式的有效时钟脉冲条件。只有当时钟条件具备时,触发器才会按照方程式的规定更新状态,否则将保持状态不变。例如,在状态图中,设电路的原状态为“010”,当CP时钟脉冲上升沿到来时,方程Q1n+1和Q3n+1成立,Q1n+1=1,Q2n+1= Q2n,Q3n+1=0,故电路的次态为“011”,余下的读者可按相同方
13、式分析。 (4)检查自启动:设电路的初态为“101”,当CP控制脉冲有效时,可求出输出为“1”,新状态为“010;类似可以求出当初态为“110”,CP有效时,输出为“1”,新状态为“010”;电路初态为“111”,CP有效时,输出为“1”,新状态为“100”。所以,电路能够自启动。13.3.1 计数器计数器 统计脉冲的个数称为计数,实现计数功能的电路称为计数器。1计数器的分类 按计数器中触发器工作是否与时钟脉冲同步可分为: 同步计数器与异步计数器。 按计数的进制可分为:二进制计数器:十进制计数器:N进制计数器。 按计数是递增还是递减可分为: 加法计数器: 减法计数器:可逆计数器。2同步计数器
14、同步计数器是典型的同步时序电路,电路中所有的触发器都共用一个时钟脉冲源,这个时钟脉冲就是被计数的输入脉冲。 1)同步计数器的分析步骤 根据电路写出各个触发器的驱动方程; 根据电路写出电路的输出方程; 将驱动方程代入相应触发器的特征方程,求出电路的状态方程; 依次假设电路的初始状态,当CP脉冲到来时,代入状态方程、输出方程,求出电路的新状态、输出,然后写出电路的状态转换真值表或电路的状态转换图; 若电路中存在无效状态,应检查电路能否自启动; 得出电路的逻辑功能。2)同步二进制计数器【例13.4】分析下图所示电路的逻辑功能。 解:(1)写出电路的驱动方程、输出方程。驱动方程为n2n13n2n13n
15、12n121111QQKQQJQKQJKJ,输出方程为n3n2n1QQQY (2)写出电路的状态方程。电路的状态方程:n3n2n1n3n2n11n3n2n1n2n1n2n11n2n11n1QQQQQQQQQQQQQQQQ(3)画出电路的状态图。 (4)结论。由状态图可知,该电路为同步三位二进制加法计数器,也称为八进制加法计数器。【例13.5】分析如图所示电路的逻辑功能。解:(1)写出电路的驱动方程、输出方程。驱动方程为 n2n13n2n13n12n121111QQKQQJQKQJKJ,输出方程为n3n2n1QQQY(2)写出电路的状态方程。电路的状态方程:n3n2n1n3n2n11n3n2n1
16、n2n11n2n11n1QQQQQQQQQQQQQQ(3)画出电路的状态图。 (4)结论。由状态图可知,该电路为同步三位二进制减法计数器,也称为八进制减法计数器。 3异步计数器 1)分析步骤 根据电路写出驱动方程、输出方程、时钟方程; 将驱动方程、时钟方程代入相应触发器的特征方程,得出电路的状态方程; 画出电路的状态图。依次假设电路的初始状态,当CP脉冲到来时,代入状态方程、输出方程,求出电路的新状态,然后画出电路的状态图,或者写出电路的状态表。 若电路中存在无效状态,应检查电路能否自启动; 叙述该电路的逻辑功能。2)异步二进制计数器【例13.6】分析如图所示电路的逻辑功能。 解:(1)写出电
17、路的驱动方程、时钟方程。n2333n1222111111111QCPKJQCPKJCPCPKJ, (2)写出电路的状态方程。 将驱动方程、时钟方程代入JK触发器的特征方程中,就得到了电路的状态方程:n2n31n3n1n21n2n11n1)()()(QQQQQQCPQQ(3)画出电路的状态图。由特征方程可得出如图13.30所示的状态图。 (4)结论。由状态图可知,该电路为异步三位二进制减法计数器,也称为异步八进制减法计数器。 13.3.2 寄存器寄存器 1基本寄存器 基本寄存器只有存放数据或代码的功能,其电路由触发器组成,下图所示为一个四位的基本寄存器,它由四个D触发器组成。图中,D3、D2、D
18、1和D0为寄存器的数据输入端,Q3、Q2、Q1和Q0为寄存器的输出端,CP为寄存器的控制端。 2移位寄存器 移位寄存器可以分为以下四类: 串入-串出工作方式的移位寄存器; 串入-并出工作方式的移位寄存器; 并入-并出工作方式的移位寄存器; 并入-串出工作方式的移位寄存器。以图13.32所示的串入-并出工作方式的四位移位寄存器为例进行分析。(1)清零。在每个触发器的端加清零信号,将各触发器置“0”,此时,寄存器的状态为“0000”。(2)存入数据。已知需要存放的数据为“A3、A2、A1、A0”。 (3)取出数据。当读数脉冲CP到来时,将四个“与门”打开,则可以同时取出在移位寄存器中所存储的数码“
19、A3 A2 A1 A0”。 13.4.1 集成计数器集成计数器 1集成四位二进制同步加法计数器 74LS161如图13.33所示。图13.33 74LS161(2)功能表。表13.8所示为74LS161集成四位二进制计数器的功能表。表13.8所示的功能表反映了74LS161是一个具有异步清零、同步置数、可以保持状态不变的、上升沿触发的四位二进制同步加法计数器。 2集成四位二进制同步可逆计数器 四位二进制同步可逆计数器74LS191。 (1)图13.34所示即为集成四位二进制可逆计数器74LS191。图13.34 74LS191(2)功能表。 3集成二进制异步计数器74LS197如图13.35所
20、示。(1)管脚说明。图13.35所示为四位二进制异步加法计数器74LS197。(2)功能表。表13.11为74LS197的功能表。图13.35 74LS197 4集成十进制同步加法计数器 1)集成十进制同步加法计数器 74LS160、74LS161、74LS162、74LS163的输出端排列图和逻辑符号完全相同,其逻辑功能也基本相似,其区别如表13.12所示。 2)集成十进制同步可逆计数器 集成十进制同步可逆计数器74LS190与集成十六进制(四位二进制)同步可逆计数器74LS191的端口排列图和逻辑符号相同,其区别为一个是十进制,另一个是十六进制。其功能对比见表13.13。13.4.2 13
21、.4.2 用集成计数器构成用集成计数器构成N N进制计数器的方法进制计数器的方法 1利用异步清零端的复位法 利用具有异步清零端的集成M进制计数器设计N进制计数器的设计步骤为: 写出状态SN的二进制代码; 求出清零函数; 画出电路图。 【例13.7】试用74LS161设计一个十二进制计数器。 解:(1)74LS161为四位二进制同步加法计数器,采用异步清零。 (2)写出状态SN(N=12)的二进制代码SN = S12 =1100。需要注意的是,十二进制是00001011(即零到十一),但必须等到状态“1100”到来时才清零(还原成状态“0000”),故SN = S12 =1100。图13.36
22、例13.7图 图13.37 例13.8图 图13.38 例13.9图 图13.39 例13.10图 【例 13.11】试用 74LS191 的置数控制端设计一个十三进制计数器,要求采用异步置数工作方式。 解:令状态 S0=0000(即 d3d2d1d0=0000) 。 (1)写出状态 SN(N=13)的二进制代码 SN= S13=1101。 (2)求出置数函数023QQQLD (3)电路如图 13.40 所示。图中,DU /=CT=0,当LD=1时,当 CP 脉冲到来时,计数器加法计数;当第 13 个计数脉冲到来时, 计数器的状态为 “1101” , 与非门输出低电平, 使得LD=0,并行异步
23、置数, 计数器翻转成 “0000” , 从而实现十三进制的加法计数。 图13.40 例13.11图 13.4.3 集成寄存器集成寄存器 1寄存单向移位寄存器现以四位移位寄存器74LS195为例,作一些说明。(1)管脚说明。图13.41所示为四位移位寄存器74LS195。图13.41 74LS195 图13.42 74LS194 (2)功能表。74LS195功能表如表13.15所示。 13.4.4 集成移位寄存器的应用集成移位寄存器的应用 1构成移位型计数器 移位寄存器除了可以用来存入数码外,还可以利用它的移位规律构成模值为N的计数器。所以又称为移位型计数器。常用的移位型计数器有环形计数器和扭型
24、计数器。 【例13.12】试分析图13.43所示电路的逻辑功能。 解:(1)接法分析。 图13.44所示电路为用四位移位寄存器74LS195组成的环形计数器(即寄存器的Q3端接至串行数码输入端J、K端)。由于这种环形计数器不能够自启动,所以在位移控制端应加启动信号。图13.43 例13.12图 在启动信号作用下,移位寄存器存入数据0001,然后一直按00010010010010000001的顺序右移,实现了模值为4的计数功能。由于这种移位型计数器,在每一个输出端(Q0、Q1、Q2、Q3)轮流出现1(或0),故称为环形计数器。图中,若将J、端接至端,则可以实现模值为8的计数器。其循环顺序为,00
25、0100110111111111101100100000000001。2构成顺序脉冲发生器 顺序脉冲发生器又称为节拍脉冲发生器或脉冲分配器,其功能是在多个输出端按照一定的顺序依次产生脉冲输出信号,以分别控制各个分系统协调工作。顺序脉冲发生器一般有两种组成方式:一是由计数器和相应的译码器构成,一是由寄存器直接产生。 【例13.13】试分析图13.45所示电路的逻辑功能。 解:图13.45所示为一种顺序脉冲发生器。 图13.45 例13.13图 (1)电路的启动。从图中可以看出,Q3与DSR相连,构成一个环形计数器,当启动信号输入负脉冲时(启动后恒为正脉冲),门G2输出为1,使M1=M0=1,寄存
26、器执行并行输入功能,使得Q3Q2Q1Q0= D3D2D1D0=0001。 (2)移位。启动信号消除后,由于输出端Q3Q2Q1Q0种有3个“0”,使得门G1的输出为1,门G2的输出为0。使得M1=0,M0=1,74LS194 开始执行右移功能。Q0Q1Q2Q3依次输出为1。 (3)保持。在移位过程中,由于Q3Q2Q1Q0中始终有3个“0”,故使得门G1的输出为1,门G2的输出为0。使得M1=0,M0=1。移位动作得以保持。 从图中可以看出,若预置数D3D2D1D0是其它的数据组合(1111和0000除外),该电路也可以构成相应序列的顺序脉冲信号发生器。本章小结本章小结 1触发器是数字电子技术中极
27、其重要的基本单元。触发器有两个稳定状态,在外界信号作用下,可以从一个稳态变为另一个稳态;无外界信号作用时状态保持不变。因此,触发器可以作为二进制存储单元使用。 2触发器的特性方程是表示其逻辑功能的重要逻辑函数,在分析(设计)时序电路时常用来作为判断电路状态转换的依据。各种不同功能的触发器的特性方程为: 3同一种功能的触发器,可以用不同的电路结构形式来实现,如基本RS触发器就有与非门、或非门两种构成形式;不同的触发器之间也可以实现其相互转换。 4时序逻辑电路的特点是,在任意时刻的输出不仅与输入有关,而且还取决于电路原来的状态。为了记忆电路的状态,时序电路必须包含存储电路。 5时序电路通常分为同步时序电路和异步时序电路两类。其主要区别在于,同步时序电路的触发器受同一时钟控制,而异步时序电路的触发器受不同的脉冲源控制。 6计数器和寄存器是比较常用的时序电路。 7在基本时序电路上加一些控制端,可以实现逻辑功能的扩展。常用的中规模集成计数器有74LS160、74LS161、74LS162、74LS163、74LS190、74LS191等,利用其控制端口,可以构成N进制计数器。 常用的中规模集成寄存器有74LS194、74LS195等。
限制150内