实用的高中数学说课稿模板汇总6篇.docx
《实用的高中数学说课稿模板汇总6篇.docx》由会员分享,可在线阅读,更多相关《实用的高中数学说课稿模板汇总6篇.docx(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、实用的高中数学说课稿模板汇总6篇实用的高中数学说课稿模板汇总6篇 作为一位不辞辛劳的人民教师,有必要进行细致的说课稿准备工作,是说课取得成功的前提。我们应该怎么写说课稿呢?以下是小编精心整理的高中数学说课稿6篇,希望能够帮助到大家。 高中数学说课稿篇1 尊敬的各位专家、评委: 上午好! 今天我说课的课题是人教A版必修1第二章第二节对数函数。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。 一、教材分析 地位和作用 本章学习
2、是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。 二、目标分析 (一)、教学目标 根据对数函数在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标: 1、知识与技能 (1)、进一步体会函数是描述变量之
3、间的依赖关系的重要数学模型; (2)、理解对数函数的概念、掌握对数函数的图像和性质; (3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。 2、过程与方法 引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。 3、情感态度与价值观 通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。 (二)教学重点、难点及关键 1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,
4、学习新知识。 2、难点:底数a对对数函数的图像和性质的影响。 关键对数函数与指数函数的类比教学。 由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。 三、教法、学法分析 (一)、教法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提
5、高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: 1、启发引导学生思考、分析、实验、探索、归纳; 2、采用“从特殊到一般”、“从具体到抽象”的方法; 3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法; 4、投影仪演示法。 在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。 (二)、学法 教给学生方法比教给学生知识更重要,本节课注重调动学生积
6、极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: 1、对照比较学习法:学习对数函数,处处与指数函数相对照; 2、探究式学习法:学生通过分析、探索,得出对数函数的定义; 3、自主性学习法:通过实验画出函数图像、观察图像自得其性质; 4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。 四、教学过程分析 (一)、教学过程设计 1、创设情境,提出问题。 在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。 问题一:这是一个怎
7、样的函数模型类型呢? 设计意图 复习指数函数 问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图 为了引出对数函数 问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢? 设计意图 (1)、为了让学生更好地理解函数; (2)、为了让学生更好地理解对数函数的概念。 2、引导探究,建构概念。 (1)、对数函数的概念: 同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可
8、见这样的问题在现实生活中还是不少的。 设计意图 前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。 但是在习惯上,我们用x表示自变量,用y表示函数值。 问题一:你能把以上两个函数表示出来吗? 问题二:你能得到此类函数的一般式吗? 设计意图 体现出了由特殊到一般的数学思想 问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。 问题四:你能根据指数函数的定义给出对数函数的定义吗? 问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么? 设计意图 前四个问题是为了引导出对
9、数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。 (2)、对数函数的图像与性质 问题:有了研究指数函数的经历,你觉得下面该学习什么内容了? 设计意图 提示学生进行类比学习 合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。 y=2x;y=log2xy=()x,y=logx 合作探究2:当a0,a1,函数y=ax与y=logax图像之间有什么关系? 设计意图 在这儿体现“从特殊到一般”、“从具体到抽象”的方法。 合作探究3:分析你所画的两组函数
10、的图像,对照指数函数的性质,总结归纳对数函数的性质。 设计意图 学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax(a0,a1,)是否具有奇偶性,为什么? 问题2:对数函数y=logax(a0,a1,),当a1时,x取何值,y0,x取何值,y 问题3:对数式logab的值的符号与a,b的取值之间有何关系? 知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。 3、自我尝试,初步应用。 例1:求下列函数的定义域 y=log0.2(4-x)(
11、该题主要考查对函数y=logax的定义域(0,+)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。) 例2:利用对数函数的性质,比较下列各组数中两个数的大小: (1)、23.4,log23.8; (2)、log0.51.8,log0.52.1; (3)、log75,log67 (在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法) 合作探究4:已知logm4 设计意图 该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。 4、当堂训练,巩固深化。 通过学
12、生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。 采用课后习题1,2,3. 5、小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。 (1)、小结: 对数函数的概念 对数函数的图像和性质 利用对数函数的性质比较大小的一般方法和步骤, (2)、反思 我设计了三个问题 、通过本节课的学习,你学到了哪些知识? 、通过本节课的学习,你最大的体验是什么? 、通过本节课的学习,你掌握了哪些技能? (二)、作业设计 作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强
13、调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。 我设计了以下作业: 必做题:课后习题A1,2,3; 选做题:课后习题B1,2,3; (三)、板书设计 板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。 五、评价分析 学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发
14、展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢! 高中数学说课稿篇2 一、教材分析 (一)地位与作用 幂函数选自高一数学新教材必修1第2章第3节。是基本初等函数之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,为今后学习三角函数等其他函数打下良好的基础在初中曾经研究过yx,yx2,
15、yx1三种幂函数。这节内容,是对初中有关内容的进一步的概括、归纳与发展,是与幂有关知识的高度升华本节内容之后,将把指数函数,对数函数,幂函数科学的组织起来,体现充满在整个数学中的组织化,系统化的精神。让学生了解系统研究一类函数的方法这节课要特别让学生去体会研究的方法,以便能将该方法迁移到对其他函数的研究 (二)学情分析 (1)学生已经接触的函数,确立利用函数的定义域、值域、奇偶性、单调性研究一个函数的意识,已初步形成对数学问题的合作探究能力。 (2)虽然前面学生已经学会用描点画图的方法来绘制指数函数,对数函数图像,但是对于幂函数的图像画法仍然缺乏感性认识。 (3)学生层次参差不齐,个体差异比较
16、明显。 二、目标分析 新课标指出“三维目标”是一个密切联系的有机整体。 (一)教学目标 (1)知识与技能 使学生理解幂函数的概念,会画幂函数的图象。 让学生结合这几个幂函数的图象,理解幂函图象的变化情况和性质。 (2)过程与方法 让学生通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。 使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。 (3)情感态度与价值观 通过熟悉的例子让学生消除对幂函数的陌生感从而引出概念,引起学生注意,激发学生的学习兴趣。 利用多媒体,了解幂函数图象的变化规律,使学生认识到现代技术在数学认知过程中的作用,从而激发学生的学习欲望。 培养
17、学生从特殊归纳出一般的意识,培养学生利用图像研究函数奇偶性的能力。并引导学生发现数学中的对称美,让学生在画图与识图中获得学习的快乐。 (二)重点难点 根据我对本节课的内容的理解,我将重难点定为: 重点:从五个具体的幂函数中认识概念和性质 难点:从幂函数的图象中概括其性质。 三、教法、学法分析 (一)教法 教学过程是教师和学生共同参与的过程,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法。 1、引导发现比较法 因为有五个幂函数,所以可先通过学生动手画出函数的
18、图象,观察它们的解析式和图象并从式的角度和形的角度发现异同,并进行比较,从而更深刻地领会幂函数概念以及五个幂函数的图象与性质。 2、借助信息技术辅助教学 由于多媒体信息技术能具有形象生动易吸引学生注意的特点,故此,可用多媒体制作引入情境,将学生引到这节课的学习中来。再利用几何画板画出五个幂函数的图象,为学生创设丰富的数形结合环境,帮助学生更深刻地理解幂函数概念以及在幂函数中指数的变化对函数图象形状和单调性的影响,并由此归纳幂函数的性质。 3、练习巩固讨论学习法 这样更能突出重点,解决难点,使学生既能够进行深入地独立思考又能与同学进行广泛的交流与合作,这样一来学生对这五个幂函数领会得会更加深刻,
19、在这个过程中学生们分析问题和解决问题的能力得到进一步的提高,班级整体学习氛氛围也变得更加浓厚。 (二)学法 本节课主要是通过对幂函数模型的特征进行归纳,动手探索幂函数的图像,观察发现其有关性质,再改变观察角度发现奇偶函数的特征。重在动手操作、观察发现和归纳的过程。 由于幂函数在第一象限的特征是学生不容易发现的问题,因此在教学过程中引导学生将抽象问题具体化,借助多媒体进行动态演化,以形成较完整的知识结构。 四、教学过程分析 (一)教学过程设计 (1)创设情境,提出问题。新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的
20、明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。 问题1:下列问题中的函数各有什么共同特征?是否为指数函数? 由学生讨论,总结,即可得出:pw,sa2,v=a,as1/2,vt1 这时学生观察可能有些困难,老师提示可以用x表示自变量,用y表示函数值,上述函数式变成: 都是自变量的若干次幂的形式。都是形如 的函数。 揭示课题:今天这节课,我们就来研究:幂函数 (一)课堂主要内容 (1)幂函数的概念 幂函数的定义。 一般地,函数 叫做幂函数,其中x是自变量,a是常数。 幂函数与指数函数之间的区别。 幂函数底数是自变量,指数是常数; 指数函数指数是自变量,底数是常数。 (2)几个常见幂函
21、数的图象和性质 由同学们画出下列常见的幂函数的图象,并根据图象将发现的性质填入表格 根据上表的内容并结合图象,总结函数的共同性质。让学生交流,老师结合学生的回答组织学生总结出性质。 以上问题的设计意图:数形结合是一个重要的数学思想方法,它包含以数助形,和以形助数的思想。通过问题设计让学生着手实际,借助行的生动来阐明幂函数的性质。 教师讲评:幂函数的性质 所有的幂函数在(0,)上都有定义,并且图像都过点(1,1) 如果a0,则幂函数的图像通过原点,并在区间0,)上是增函数 如果a0,则幂函数在(0,)上是减函数,在第一象限内,当x从右边趋向于原点时,图像在y轴右方无限地趋近y轴;当趋向于时,图像
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实用 高中数学 说课稿 模板 汇总
限制150内