磁共振成像的原理及临床应用.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《磁共振成像的原理及临床应用.ppt》由会员分享,可在线阅读,更多相关《磁共振成像的原理及临床应用.ppt(146页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、磁共振成像的原理及临床应用,我要骨科(51骨科)网,What is MRI ?,磁共振成像(Magnetic Resonance Imaging ,MRI),又称核磁共振成像(Nuclear Magnetic Resonance ,NMR),是一种新的、非创伤性的成像方法,它不用电离辐射而可以显示出人体内部解剖结构。利用一定频率的射频信号(radio frequency,RF)在一外加静磁场内,对人体的任何平面,产生高质量的切面成像(cross sectional imaging)。,磁共振成像的原理及临床应用,第一节 MRI发展概况,1946年美国斯坦福(Stanford)大学的Felix
2、Bloch和哈佛(Harvard)大学的Edward Purcell各自进行研究,检测到大块物质内核磁共振吸收,更清楚地阐述了原子核自旋(Spin)的存在,几乎同时发表他们的研究成果,为此,他们共同获得了1952年诺贝尔物理学奖。NMR的应用逐渐地从物理和化学领域,扩大到更为广泛的学科,如考古学直至医学。,第一节 MRI发展概况,在医学影像学方面,1973年Lauterbur研究出MRI所需要的空间定位方法,也就是利用梯度场。他的研究结果是获得水的模型的图像。在以后的10年中,人们进行了大量的研究工作来制造磁共振扫描机,并产生出人体各部位的高质量图像,先后通过MR扫描,获得手、胸、头和腹部的图
3、像。1980年商品化MRI装置问世。,第二节 MRI的基本原理,本节介绍核磁共振这一物理现象最基本的理论知识,我们应用一般物理学、力学及磁学的原理阐述。,一、原子核及其在磁场内的特性,人体由很多分子组成,分子由原子组成;所有原子的核心都是原子核;带正电荷和中性粒子的集合体;占原子质量的绝大部分;,一、原子核及其在磁场内的特性,从理论上讲,很多元素都可以用核磁共振来成像。也就是任何一个原子核,只要其所含的质子或中子的任何一个为奇数时,就具备磁性,就可以产生磁共振信号。,一、原子核及其在磁场内的特性,MRI主要是应用于氢核的成像,这是出于:一是对其磁共振信号的敏感性高;的旋磁比最高,因此最敏感,即
4、MR信号被测出的效率,随共振信号频率的增加而改善。二是它在自然界含量丰富。氢存于水和脂肪中,因而在人体中极为丰富,每立方毫米软组织中含有约1019个原子,其所产生的磁共振信号要比其他原子强1000倍。,一、原子核及其在磁场内的特性,由于1只有一个质子,没有中子,所以氢核的成像也称质子成像。氢核有两个特性:其一是它含有一个不在核中心的正电荷;其二是它有角动量或自旋。Pauli理论,具有奇数原子质量或奇数原子数的核均具有角动量及具有特征性的、大于零的自旋量子数。,一、原子核及其在磁场内的特性,自旋的氢核其正电荷沿着一近似圆形路线运动,犹如电流通过环形线圈一样,从而在其周围产生一磁场。此滋场的大小与
5、方向用磁矩 来表示,形成一个微观的磁体偶极子。,具有磁矩的快速自旋核可以看成为极小磁棒,一、原子核及其在磁场内的特性,共振是一种常见的现象。指南针是我们最熟悉的磁体,地球是一个磁场。指南针在地球表面作定向排列,即在静止状态下指北。如果我们用手指轻击指南针,使之来回摆动,直到指南针从我们手指上得到的能量全部放出后,又回到原来的位置,指北。这就是共振现象。针摆动的频率为共振頻率。,一、原子核及其在磁场内的特性,共振频率与外磁场强度成正比。地球的两极场强最强,赤道最弱。在赤道与两极之间,磁场强度逐渐变化,称梯度磁场或简称梯度。如果指南针在赤道摆动的频率为周/秒,越向北其摆动的频率越快。这是因为北极滋
6、场强度较赤道大2.3倍。,一、原子核及其在磁场内的特性,这个简单的例子可以帮助我们了解磁共振成像中的基本要点:指南针置于磁场中与外磁场的方向作定向排列;指南针的共振频率与外磁场强度成正比;当有梯度磁场时,根据指针摆动频率的变化可以推断其在磁场中所处的位置。,众多的氢核(质子)就是许多微观的磁偶极子,在没有外加磁场影响下,它们的磁矩是任意指向,杂乱无章地排列着。在这种情况的组织标本中,净磁量为零。,一、原子核及其在磁场内的特性,将这些指向杂乱无章的质于置于强大的静磁场(B0) 中时,质于群的磁矩将会沿静磁场的方向作定向排列。略超过半数的质子与静磁场B0平行排列,略少于半数的质子则指向相反(与静磁
7、场呈反平行方向排列)。,一、原子核及其在磁场内的特性,当有两种可能的排列状态时,耗能少的、处于低能态的排列状态占优势。,一、原子核及其在磁场内的特性,一、原子核及其在磁场内的特性,低能量级的、平行于静磁场方向的质子与高能量级的、反平行于静磁场方向的质子来回翻转,相互抵消,而产生平衡的磁化量0,也就是在一定量的组织中,所有氢核的磁化量的总和。这一净平衡磁化量的指向与外加静磁场是一致的。要使置于外加静磁场内的组织标本达到磁化,需要足够的时间(约为:510秒)。,二、磁共振是怎样发生的,每个质子为细小的自旋磁体,当受到外加静磁场的作用时,静磁场对质子的磁矩产生扭转作用,这样就使质子顺着外加静磁场的中
8、轴旋转,称为进动;它如同旋转的陀螺受地心引力一样。,二、磁共振是怎样发生的,以坐标系来表示每个质子受到外加静磁场的作用时的磁力的方向大小。,平衡状态中,净磁化矢量并不在接受线圈中产生感应电流要获得自旋信息,净磁化矢量必须被搅乱或激励可用射频脉冲一种短促的无线电波,与感兴趣核的拉莫尔频率一致净磁化从平衡方向产生不同程度的偏转角度射频脉冲激励时,净磁化以拉莫尔频率或共振频率沿主磁场方向进动,二、磁共振是怎样发生的,射频脉冲激励时,净磁化以拉莫尔频率或共振频率沿主磁场方向进动,二、磁共振是怎样发生的,射频激励脉冲实际上是另一个磁场(B1)B1方向垂直于Bo及作用非常短的时间B1磁场的作用是使磁化沿其
9、进动,从垂直方向转向Mxy平面,二、磁共振是怎样发生的,净磁化(M) 有两个矢量成分:横向面的Mxy和纵向面的Mz只有在XY平面的成分能被探测到调整射频脉冲强度和时间,使磁化从平衡状态翻转90度时,可获得最大磁共振信号,二、磁共振是怎样发生的,二、磁共振是怎样发生的,场强与进动频率的关系以Larmor公式表示: 0质子的共振频率(MHz)(进动频率) 0外加静磁场场强,单位是Tesla,简称 旋磁比,是一个常数,氢核的旋磁比为42.58MHz/T从上述公式可知,场强为1T时,那么进动频率(0)即等于值(旋磁比)。,二、磁共振是怎样发生的,频率(0)非常重要,其原因如下:在病人作MRI检查时,必
10、须用这样频率的电磁波(RF脉冲),方可激励原子核;MR仪的接收器必须调谐至此频率,以便接收来自病人的信号。,二、磁共振是怎样发生的,当给一定磁场中含氢的标本以一个与Larmor频率相匹配的射频脉冲激发时,质子吸收能量,又将吸收的能量以相同频率的无线电波形式释放出来。这一吸收能量的过程称激励。,二、磁共振是怎样发生的,在Larmor频率条件下,质子吸收及释放能量的过程称为核磁共振。,二、磁共振是怎样发生的,核即原子核,磁有两种含义:外加静磁场B0;由射频脉冲产生的激励磁场B1。B0与B1有以下方面的不同:首先,B0的场强大约是B1的10000倍;其次,B0是恒定的,方向与磁体扫描膛平行,B1磁场
11、迅速转动,方向总是与B0垂直。,二、磁共振是怎样发生的,用射频线圈做天线接收器,将释放出来的能量转化为信号。在进行人体磁共振成像时,信号的强度取决于质于的数量,也即质子的密度。脂肪、肌肉、血液以及骨胳中质子含量的不同,决定磁共振图像中各种组织信号的强弱和对比,这种图像即称为质于密度像。,二、磁共振是怎样发生的,除了组织中质于含量的不同对成像起作用以外,还有其他的组织特性对磁共振图像的信号有更为重要的影响,这就是组织磁化的弛豫时间。,三、弛豫时间,与X线和CT成像的原理不同,MRI没有X线辐射,而主要利用质子密度与质子的弛豫时间(T1与T2)的差异成像,尤其是弛豫时间更为重要。因为质子在人体中的
12、差异仅10,但弛豫时间可相差百分之数百。,三、弛豫时间,弛豫时间可反映分子水平上的差别,从而发现人体生物化学与生理学的早期改变。这样就不同于过去仅从病理解剖学的基础上来表达疾病的传统概念,而是能更早期发现人体内生理、生化的改变。,三、弛豫时间,若要充分认识一幅MRI图像中强弱信号的意义,必须对射频脉冲以及射频脉冲去除后,在静磁场作用下,从高能状态(与磁场垂直的位置)到低能状态(与磁场平行的位置)的恢复过程,即弛豫过程,有所认识。,(一)质子(氢核)的T1弛豫,质于在受到射频脉冲激励后,吸收能量;当射频脉冲一停止,纵向磁化开始恢复,质子释放能量;此时,将在接收线圈中产生RF信号;,(一)质子(氢
13、核)的T1弛豫,纵向磁化的恢复率是以纵向弛豫时间(T1)来表示的;T1就是沿静磁场方向的纵向磁化恢复约2/3(63)所需的时间。,(一)质子(氢核)的T1弛豫,T1是时间常数,生物组织的T1值从大约50毫秒到几秒不等不同的组织具有不同的T1值:脂肪为150250ms。而脑脊液则为23s。T1弛豫又称纵向弛豫、热弛豫,自旋-晶格弛豫。它是纵向磁化恢复的过程,在这过程中有能量传递,是以热的形式逸散。它又反映了分子运动频率与Larmor频率之间的关系,如果二者相同,T1弛豫有效,并且迅速,如果不相同,T1弛豫无效。,(二)质子的T2弛豫,当射频脉冲的激励刚一停止,所有质于的进动频率一致,即相位一致,
14、此时信号最强。由于外加静磁场强度的不均匀以及存在空间定位的梯度场,从而使质子的进动频率发生变化,而失去其相位一致性,称失相位。第三种因素则反映人体组织的固有特性,那就是磁化的质子间的相互作用,以及与由于分子和巨分子所建立的磁环境的相互作用,而引起的相位不一致,这样产生的相位不一致是不可逆的。,(二)质子的T2弛豫,相位不一致,一些质子进动快,一些则进动慢,这是受局部磁环境的影响所致,其结果是净横向磁化衰减(decay)。此时,在接收器线圈中所得到的信号减少,以至完全丧失。衰减63的横向磁化所需的时问,亦即横向磁化衰减至其原有值的37所需时间,即为T2弛豫时间。,(二)质子的T2弛豫,a紧接施加
15、90RF脉冲后,原子核的磁化偶极子均相位一致地进动,横向磁向量Mxy为最大值。b随时间进展,磁化偶极子失相位,有些进动较快,有些则进动较慢,这是由于局部磁环境所致。这种失相位导致了净横向磁化量衰减。c接收线圈中所记录的信号逐渐衰减,T2为横向磁化衰减至原有值的37所需的时间。,(二)质子的T2弛豫,T2弛豫时间又称横向弛豫时间,又称自旋-自旋弛豫时间。自旋一词取自核的自旋;T2总是比T短约为T的1020。,三、弛豫时间,应用一空间坐标系X-,Y-,Z-轴加以叙述,磁矢量,代表一个小范围组织内也即一个体积元(体素)内所有质子的磁化强度及方向。,横向及纵向成分的弛豫过程a 90脉冲; b 90脉冲
16、刚停止,横向成分最大; c,d 弛豫过程:横向成分迅速衰减,纵向成分缓慢增长;e 纵向成分最大。,三、弛豫时间,当人体被置于一外加静磁场中,磁矢量沿Z轴取向,与静磁场方一致.以箭头为标志,箭头长短与体素内所含氢质子数成正比。加一个90脉冲,就偏离Z,转90至与静磁场垂直的位置,在X-平面遂产生一个横向磁矢量。此时在接收线圈内产生感应,因而可以用电流表测得此信号。当90脉冲停止后,在弛豫过程中,磁矢量分离成纵向成分z,与横向成分xy。由于静磁场并非均匀一致,而且分子间、分子与原子间又存在的内磁场,因此横向成分xy从最强很快衰减至零,即T2弛豫。,三、弛豫时间,控制射频脉冲的强度与时间,可得到90
17、或180等不同的脉冲,从而可控制磁矢量偏离Z轴的夹角。使磁矢量偏离90与180的射频脉冲分别称90与180脉冲,180脉冲使磁矢量转180,从正Z轴转到负Z轴,它不产生横向磁矢量,因此不能产生信号。同样360脉冲也不能产生信号。只是有了横向磁矢量,才能产生信号。,四、自由感应衰减,自由感应衰减是表示90脉冲激励以后立即产生的信号。当90脉冲终止后,横向磁矢量开始消失,纵向磁矢量重新出现,由于质子失去相位一致性,横向磁矢量这一信号很快衰减,在MRI不能被直接利用,因为必须有足够的时间来使梯度场起作用,以获取空间定位的信号。,四、自由感应衰减,为了要取得MR成像中有用的信号,必须在一定间隔时间再给
18、一个 180RF脉冲,以取得一个自由感应衰减的回波信号,即自旋回波信号。,四、自由感应衰减,这个可以用浅显的比喻来理解:此180RF脉冲的作用,就像一堵墙和一座山那样将信号碰回,如同在回音壁或山谷中听到的回声一样。这就是我们为什么称由此所形成的更强一些的信号为回波或自旋回波的道理。,四、自由感应衰减,假设一只兔于与一只乌龟从同一起跑线上赛跑,在某一时间(TE/2)后,兔子跑在乌龟的前面。当让它们在同一时间向相反方向跑来,则两者会同时回到起点(假设速度不变)。,四、自由感应衰减,在得到信号自旋回波后,质子再次失去相位一致性。正如前面所说的,较快的质子位于前面。可以用另一个180脉冲再行实验,并且
19、再一个、再一个如果绘制时间与信号强度曲线,就会得到一条曲线。,休息,五、伪 影,MR与CT比较其优点之一是伪影少。骨骼、大的钙化、高密度造影物质MR都不形成伪影。人体内非铁磁性金属物体仅导致图像轻微变形。按伪影形成的原因,伪影可分为三类。,(一)人体体内因素形成的伪影,运动形成的伪影 MR信号采集时间比人体内某些器官的生理运动,如心脏搏动、呼吸动和肠蠕动周期长,因而胸部和上腹部的图像易受这些器官运动的影响。心脏和呼吸运动产生的伪影可以用心电图门控及呼吸门控减少。,(一)人体体内因素形成的伪影,运动形成的伪影,(一)人体体内因素形成的伪影,血液和脑脊液流动伪影动静脉内的血流均可产生伪影,前者为血
20、管搏动引起;后者因血流缓慢形成。脑脊液在不同部位流速不同,产生不同信号的伪影。脑脊液的流动可造成相位编码方向上的运动伪影。,(二)体外因素形成的伪影,金属物体 非铁磁性金属物体产生和其形态相似的周围绕以高信号的低信号区。铁磁性物质引起局部低信号区和图像变形,伪影和正常图像分界不清。此种伪影是金属物质受射频磁场作用产生涡旋电流所致。,(二)体外因素形成的伪影,静电 静电产生的伪影为互相交错的带状高低信号带,影响全部图像。多见于为了保暖给病人盖毛毯和尼龙类织物引起。为此,病人用的床单、衣服、保暖物品等必须用棉织品。,(三)MRI系统形成的伪影,化学位移伪影 此种伪影出现于脂肪和非脂肪(主要是含水的
21、)器官之间。产生原因为水分子的质子进动频率比脂肪质子进动频率快。梯度磁场使这两种物质产生不同的进动频率,并且编码使邻近两种像素信号重叠。结果在一侧脂肪-水界面出现高信号带,而另一侧水-脂肪界面出现低信号带。常见于肾-脂肪,膀胱-脂肪交界面。,(三)MRI系统形成的伪影,化学位移伪影 A肾横轴位,T2加权像,肾和周围脂肪组织分界虽然清楚,但在梯度磁场的高、低侧分别可见白色和黑色的条状伪影。为化学位移和梯度磁场关系的线条图。C膀胱周围的化学位移伪影。,(三)MRI系统形成的伪影,折叠伪影 此种伪影为被检物体的一部分处于成像范围外的时候。伪影的特点为伪影重叠于其图像的对侧,其解剖方位和信号强度完全同
22、真正扫描物体影像相似,并和相位编码方向一致。,(三)MRI系统形成的伪影,低信号伪影 伪影和真正的物体图像相同,只是信号低和图像方向相反,出现于扫描物体图像的一侧。产生原因为质子共振频率的正负端被错误采集或者是X、轴磁化矢量错误放大。,七、MRI对比剂,(一)概述MRI具有很强的组织分辨能力。故在投入临床应用初期曾被认为是一种不需要使用对比剂的“非创伤性”检查方法。未经增强的MRI平扫尚有一些缺陷。在某些情况下,不能满足人们对诊断疾病高敏感性和特异性的要求。,七、MRI对比剂,(一)概述MRI平扫在检查组织功能活动方面亦有一定局限性。利用对比剂来获得更完整的诊断信息开始受到重视。临床常用的是以
23、GD-DTPA为代表的钆(gadolinum, Gd)类顺磁性对比剂。此类对比剂在中枢神经系统疾病的发现和定性诊断方面显示出重要价值。,七、MRI对比剂,MR对比剂的功用与传统X线对比剂,如碘制剂类似;其作用机制原理却不同。X线对比剂直接影响X线的吸收和穿透,增强效应与局部对比剂的浓度成线性关系。绝大多数MR对比剂所选的元素就是根据它们所具有的缩短组织T1和T2时间的能力。一般说来,MR对比剂总是同时影响T1和T2,但程度却不一定相同。在某一特定剂量范围内往往以一种影响占主导地位。,七、MRI对比剂,(二)MR对比剂的分类和作用机制MR对比剂有几种分类方法,其中较常用的有按MR图像信号的改变划
24、分为阳性、阴性对比剂;根据MR特性区分为顺磁性、铁磁性和超顺磁性对比剂;还有依据对比剂主要影响T1或T2,简单分为T1增强剂和T2增强剂。,七、MRI对比剂,1阳性对比剂构成及作用原理阳性对比剂又可称为顺磁性或T1对比剂。由一些金属元素,如锰(Mn),铁(Fe)和钆(Gd)所组成。Gd含有个不成对的核外电子。由于不成对核外电子的存在,使这些元素具有很强的顺磁性。在外加磁场中,这些元素将干扰邻近质子的弛豫,导致T1和T2时间缩短。在顺磁性物质浓度较低时,T1缩短的效应占主导地位,引起MR信号增加。,七、MRI对比剂,1阳性对比剂Gd类细胞外对比剂最主要应用在中枢神经系统的MR成像。在正常情况下,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 磁共振 成像 原理 临床 应用 利用 运用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内