第四节 高阶导数 (P122 第五节).ppt
《第四节 高阶导数 (P122 第五节).ppt》由会员分享,可在线阅读,更多相关《第四节 高阶导数 (P122 第五节).ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,二、高阶导数的运算法则,第三节,一、高阶导数的概念,机动 目录 上页 下页 返回 结束,高阶导数,第二章,一、高阶导数的概念,速度,即,加速度,即,引例:变速直线运动,机动 目录 上页 下页 返回 结束,定义.,若函数,的导数,可导,或,即,或,类似地 , 二阶导数的导数称为三阶导数 ,阶导数的导数称为 n 阶导数 ,或,的二阶导数 ,记作,的导数为,依次类推 ,分别记作,则称,机动 目录 上页 下页 返回 结束,设,求,解:,依次类推 ,例1.,思考: 设,问,可得,机动 目录 上页 下页 返回 结束,例2. 设,求,解:,特别有:,解:,规定 0 ! = 1,思考:,例3. 设,求,机动
2、 目录 上页 下页 返回 结束,例4. 设,求,解:,一般地 ,类似可证:,机动 目录 上页 下页 返回 结束,例5 . 设,解:,机动 目录 上页 下页 返回 结束,例6. 设,求使,存在的最高,分析:,但是,不存在 .,2,又,阶数,机动 目录 上页 下页 返回 结束,二、高阶导数的运算法则,都有 n 阶导数 , 则,(C为常数),莱布尼兹(Leibniz) 公式,推导 目录 上页 下页 返回 结束,用数学归纳法可证莱布尼兹公式成立 .,机动 目录 上页 下页 返回 结束,例7.,求,解: 设,则,代入莱布尼兹公式 , 得,机动 目录 上页 下页 返回 结束,例8. 设,求,解:,即,用莱
3、布尼兹公式求 n 阶导数,令,得,由,得,即,由,得,机动 目录 上页 下页 返回 结束,内容小结,(1) 逐阶求导法,(2) 利用归纳法,(3) 间接法, 利用已知的高阶导数公式,(4) 利用莱布尼兹公式,高阶导数的求法,如,机动 目录 上页 下页 返回 结束,思考与练习,1. 如何求下列函数的 n 阶导数?,解:,解:,机动 目录 上页 下页 返回 结束,(3),提示: 令,原式,原式,机动 目录 上页 下页 返回 结束,解:,机动 目录 上页 下页 返回 结束,2. (填空题) (1) 设,则,提示:,各项均含因子 ( x 2 ),(2) 已知,任意阶可导, 且,时,提示:,则当,机动 目录 上页 下页 返回 结束,3. 试从,导出,解:,同样可求,(见 P101 题4 ),作业P101 1 (9) , (12) ; 3 ; 4 (2) ; 8 (2) , (3) ; 9 (2) , (3),第四节 目录 上页 下页 返回 结束,解:,设,求,其中 f 二阶可导.,备用题,机动 目录 上页 下页 返回 结束,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 导数 p122 五节
限制150内