华师大版八年级数学上册期末复习课件全册.ppt
《华师大版八年级数学上册期末复习课件全册.ppt》由会员分享,可在线阅读,更多相关《华师大版八年级数学上册期末复习课件全册.ppt(153页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 小结与复习第11章 数的开方要点梳理考点讲练课堂小结课后作业八年级数学上(HS) 教学课件一、平方根、算术平方根和立方根的概念与性质 概 念表示主要性质平方根 算术平方根 立方根 若 ,则x叫做a的平方根. 2(0)xa aa正数有两个平方根,互为相反数0的平方根是0.负数没有平方根.若 则x的非负数值 叫做a的算术平方根. 2(0)xa aa非负性:当a 0时, 0.a若 ,则x叫做的立方根. 3xa3a正数的立方根是一个正数;负数的立方根是一个负数;0的立方根是0. 要点梳理要点梳理联 系 平方根与算术平方根:(1)具有包含关系:平方根包含算术平方根,算术平方根是平方根中的一种;(2)存
2、在条件相同:平方根和算术平方根都只有 才有;(3)0的平方根、算术平方根均为 . . 平方根与立方根:(1)都与相应的乘方运算互为 运算;(2)都可归结为非负数的非负方根来研究平方根主要通过算术平方根来研究,而负数的立方根也可通过转化为正数的立方根来研究,即 ;(3)0的平方根和立方根都是0.非负数0逆3a3a二、开平方与开立方 求一个非负数a的 的运算,叫做开平方其中a叫做 . 求一个数a的 的运算,叫做开立方其中a叫做 . 开平方与 、开立方与 都分别互为逆运算 点拨 (1)求正数的平方根时,往往先求出其算术平方根,再在求出的数前面加上“”号;(2)根据平方(立方)运算与开平方(开立方)运
3、算互为逆运算的关系,我们可以通过平方(立方)运算来求一个数的平方根(立方根)平方根被开方数立方根被开方数平方立方强调:数的开方的几个重要性质性质1:a 0 (a0) (双重非负性) 性质2:( a )2 = a (a0) 性质3:(a0) a (a0)-a a2 = |a| = 性质4: 33aa 点拨算术平方根的双重非负性:算术平方根的符号“ ”不仅是一个运算符号(对被开方数实施开平方运算),另一方面也是一个性质符号,即表示非负数a的正的平方根1. 用计算器求一个正数的算术平方根三、用计算器求算术平方根、立方根2. 用计算器求立方根 用计算器求一个数a的立方根,只需要按书写顺序在计算器上依次
4、键入 ( ) SHIFTa=a= 用计算器求一个正数a的算术平方根,只需要按书写顺序在计算器上依次键入3四、实数1.实数的分类(1)按定义分:(2)按符号分:实数有理数分数整数无理数(有限小数及无限循环小数)(无限不循环小数)实数正实数负实数正有理数正无理数负有理数负无理数02.实数与数轴(1)实数和数轴上的点是一一对应的关系;(2)在数轴上表示的两个数,右边的数总比左边的数大.3.在实数范围内,有理数的有关概念、大小比较法则、运算法则以及运算律同样适用.考点讲练考点讲练考点一考点一 平方根、算术平方根及立方根平方根、算术平方根及立方根 例1 已知一个正数的两个平方根分别是a+3和2a-18,
5、求这个正数.【解析】根据一个正数的平方根有两个,它们互为相反数,可以得到关于a的一元一次方程,解之求得a的值,从而可求出这个正数.解:根据平方根的性质,有a+3+2a-18=0,解得a=5,a+3=8,82=64,所以这个正数是64. 一个正数的平方根有两个,它们互为相反数而一个非负数的算术平方根只有一个.另外,一个数的立方根也只有一个,且与它本身的符号相同.方法总结1.下列说法正确的有( ) -64的立方根是-4; 49的算术平方根是7; 的立方根是 ; 的平方根是 . A.1个 B.2个 C.3 个 D.4个1271311614B针对训练C2. 的平方根是 ( ) A.4 B.2 C.2
6、D.416例2 若a,b为实数且 +|b-1|=0,则(ab)2016 = . 1a3.若 与(b-27)2 互为相反数,则 .33ab8a-11【解析】先根据非负数的性质求出a,b的值,再根据乘方的定义求出(ab)2016的值. +|b-1|=0,a+1=0,且b-1 =0,a =-1 ,b =1.(ab)2016 = (-11)2016= (-1)2016=1 , 故填1.1a1初中阶段主要涉及三种非负数: 0,|a|0,a20.如果若干个非负数的和为0,那么这若干个非负数都必为0.a方法总结针对训练4 .在实数 , ,0,-1 中,无理数是( ) A. B. C.0 D.-11515B例
7、3 在实数 , , 中,无理数有 ( ) A.3个 B.2个 C.1个 D.0个34222A考点考点二 无理数的识别针对训练【解析】 是分数; 虽然含有分母2,但它的分子是无理数 ,所以 是无理数;同理 也是无理数. 故选B.34222222例4 如图,数轴上的点A,B分别对应实数a,b,下列结论正确的是( ) A.ab B.|a|b| C.-ab D.a+b0ba0BAC【解析】数轴上的点表示的数,右边的总比左边的大,故A不正确;根据点A,B与原点的距离知|a|0,根据|a|b|,知-ab,C正确.故选C.针对训练5. 若|a|=-a,则实数a在数轴上的对应点一定在( ) A.原点左侧 B.
8、原点或原点左侧 C.原点右侧 D.原点或原点右侧B考点考点三 实数与数轴上的点的关系例5 估计 的值在( )A.2到3之间 B.3到4之间 C.4到5之间 D.5到6之间61B考点考点四 实数的运算与大小比较【解析】461510, 4201510.3. 比较大小:420与与1510.考点二 整式的运算 例2 计算:x(x2y2-xy)-y(x2-x3y) 3x2y,其中x=1,y=3.【解析】在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练正确地运用运算法则. 解:原式=(x3y2-x2y-x2y+x3y2) 3x2y =(2x3y2-2x2y) 3x2y = .2233x
9、 y当x=1,y=3时,时,原式= .222241333333x y方法总结针对训练 整式的乘除法主要包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式以及单项式除以单项式、多项式除以单项式,其中单项式乘以单项式是整式乘除的基础,必须熟练掌握它们的运算法则,整式的混合运算,要按照先算乘方,再算乘除,最后算加减的顺序进行,有括号的要算括号里的. 4.一个长方形的面积是a2-2ab+a,宽为a,则长方形的长为 . 5.已知多项式2x3-4x2-1除以一个多项式A,得商为2x,余式为x-1,则这个多项式是 .a2-2b+12122xx考点三 整式的乘法公式的运用 例3 先化简,再求值:(x-y
10、)2+(x+y)(x-y) 2x,其中x=3,y=1.5.【解析】运用平方差公式和完全平方公式,先算括号内的,再进行整式的除法运算. 解:原式=(x2-2xy+y2+x2-y2) 2x =(2x2-2xy) 2x =x-y. 当当x=3,y=1.5时,原式=3-1.5=1.5.方法总结针对训练 整式的乘法公式包括平方差公式和完全平方公式,而完全平方公式又分为两个:两数和的完全平方公式和两数差的完全平方公式,在计算多项式的乘法时,对于符合这三个公式结构特征的式子,运用公式可减少运算量,提高解题速度.6.求方程(x-1)2-(x-1)(x+1)+3(1-x)=0的解.解:x2+9y2+4x-6y+
11、5=0, (x2+4x+4)+(9y2-6y+1)=0,(x+2)2+(3y-1)2=0.x+2=0,3y-1=0,解得x=-2, y= ,7.已知x2+9y2+4x-6y+5=0,求xy的值.解:原方程可化为-5x+5=0,解得x=1.1312(2 ).33xy 考点四 因式分解 例4 判断下列各式变形是不是分解因式,并说明理由: (1)a2-4+3a=(a+2)(a-2)+3a; (2)(a+2)(a-5)=a2-3a-10; (3)x2-6x+9=(x-3)2; (4)3x2-2xy+x=x(3x-2y)2.解:(1)不是,因为最后不是做乘法运算,不是积的形式;(2)不是,因为从左边到右
12、边是做乘法运算;(3)是;(4)不是,因为令x=2,y=1,左边=10,右边=32,不是恒等变形.【解析】(1)多项式的因式分解的定义包含两个方面的条件,第一,等式的左边是一个多项式;其二,等式的右边要化成几个整式的乘积的形式,这里指等式的整个右边化成积的形式;(2)判断过程要从左到右保持恒等变形.方法总结针对训练 因式分解是把一个多项式化成几个整式的积的形式,它与整式乘法互为逆运算,分解因式的方法主要是提公因式法和公式法,因式分解时,一般要先提公因式,再用公式法分解,因式分解要求分解到每一个因式都不能再分解为止.8.下列变形,是因式分解的是( ) A. a(x+y)=ax+ay B. x2+
13、4xy+y2-1=x(x+4y)+(y+1)(y-1) C. am2-a=a(m+1)(m-1) D. m2-9n2+3=(m+3n)(m-3n)+3.C考点五 本章数学思想和解题方法u转化思想 例5 计算:(1)-2a3a2b3 ( ; (2)(-2x+5+x2)(-6x3).25bc【解析】(1)单项式乘以单项式可以转化为有理数的乘法和同底数幂的乘法;(2)多项式乘以单项式可以转化为单项式乘以单项式.解:(1)原式=1 23 1342122 3.55abca b c (2)原式=(-2x)(-6x3)+5(-6x3)+x2(-6x3)=12x4-30 x3-6x5. 将要解决的问题转化为另
14、一个较易解决的问题,这是初中数学中常用的思想方法.如本章中,多项式多项式 单项式多项式 单项式单项式 有理数的乘法和同底数幂的乘法.方法总结转化转化转化针对训练 9.计算:(4a-b)(-2b)2. 解: 原式=(4a-b)4b2=16ab2-4b3 u整体思想 例6 若2a+5b-3=0,则4a32b= .【解析】已知条件是2a+5b-3=0,无法求出a,b的值因此可以逆用积的乘方先把4a32b.化简为含有与已知条件相关的部分,即4a32b=22a25b=22a+5b.把2a+5b看做一个整体,因为2a+5b-3=0,所以2a+5b=3,所以4a32b=23=8.8 在本章中应用幂的运算法则
15、、乘法公式时,可以将一个代数式看做一个字母,这就是整体思想,应用这种思想方法解题,可以简化计算过程,且不易出错.方法总结针对训练 10.若xn=5,则(x3n)2-5(x2)2n= .12500 11.若x+y=2,则 = .2211xxyy222 例7 如图所示,在边长为a的正方形中剪去边长为b的小正方形,把剩下的部分拼成梯形,分别计算这两个图形的阴影部分的面积,验证公式是 .baaaabbbbba-bu数形结合思想a2-b2=(a+b)(a-b)【解析】通过图形面积的计算,验证乘法公式,从图形中的阴影 部分可知其面积是两个正方形的面积差(a2-b2),又由于图的梯形的上底是是2b,下底是2
16、a,高为a-b,所以梯形的面积是 (2a+2b)(a-b) 2=(a+b)(a-b),根据面积相等,得乘法公式a2-b2=(a+b)(a-b). 本章中数形结合思想主要体现在根据给定的图形写出一个代数恒等式或根据代数式画出几何图形. 由几何图形得到代数恒等式时,需要用不同的方法表示几何图形的面积,然后得出代数恒等式;由代数恒等式画图时,关键在于合理拼接,往往是相等的边拼到一起方法总结 12.我们已知道,完全平方公式可以用平面几何图形的面积来表 示,实际上还有一个代数恒等式也可以用这种形式来表示,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用图和图等图形的面积表示.aaabbabab
17、aba2a2b2图b2a2a2abababaaabb图针对训练(2)请画一个几何图形,使它的面积能表示(a+b)(a+3b)=a2+4ab+3b2.(1)请写出图所表示的代数恒等式;bbaabaabababababa2a2b2b2图【答案】(1) (2a+b)(a+2b)=2a2+5ab+2b2; (2)如如图.图a2baababababb2b2b213.有若干张如图(1)所示的正方形和长方形卡片,如果要拼一个长为(2ab),宽为(ab)的长方形,则需要A类卡片_张,B类卡片_张,C类卡片_张,请你在图(2)的大长方形中画出一种拼法(1)(2)2 1 3 14.图是一个长为2a,宽为2b的长方
18、形,沿图中虚线剪开,可分成四块小长方形(1)求出图的长方形面积;(2)将四块小长方形拼成如图所示的正方形,利用阴影部分面积的不同表示方法,直接写出代数式(ab)2、(ab)2、ab之间的等量关系解:(1)(aa)(bb)4ab. (2)(ab)2(ab)24ab.幂的运算乘法公式整式的乘除积的乘方平方差公式多项式与单项式相乘、相除完全平方公式整式的乘除法单项式与单项式相乘、相除多项式与多项式相乘同底数幂相乘幂的乘方同底数幂相除课堂小结课堂小结因式分解提公因式法公式法 小结与复习第13章 全等三角形要点梳理考点讲练课堂小结课后作业八年级数学上(HS) 教学课件1命题判断某一件事情的语句叫做 .注
19、意两点“判断”和“语句”所谓判断就是要作出肯定或否定的回答,一般形式:“如果,那么”“若,则”“是”等,但是,如“连结A、B两点”就不是命题;所谓语句,要求完整,且是陈述句,不是疑问句、祈使句等,如“如果两直线平行”叙述不完整,也不是命题2命题的组成每个命题都是由 和 两部分组成的条件是已知事项,结论是由已知事项推断出的事项命题一般写成“如果,那么”的形式,“如果”引出的部分是条件,“那么”引出的部分是结论条件结论要点梳理要点梳理命题3命题的真假命题有真有假,其中正确的命题叫做 ;错误的命题叫做 .事实上,要说明一个命题是假命题,通常可以举出一个例子,使之具有命题的条件,而不具有命题的结论,这
20、种例子称为反例要说明一个命题是真命题需根据基本事实和定理证明4基本事实与定理经过长期的实践总结出来,并把它们作为判断其他的命题真假的原始依据,这样的真命题叫做 .从基本事实或其他真命题出发,用逻辑推理的方法判断它们是正确的,并可以作为进一步判断其他命题真假的依据,这样的真命题叫做 .真命题假命题基本事实定理5判定三角形全等主要有五种方法:(1)全等三角形的定义:三边对应相等,三角对应相等的两个三角形 ;(2)三边对应相等的两个三角形 (简记为:S.S.S.);(3)两角和它们的夹边对应相等的两个三角形 (简记为:A.S.A.);(4)两角和其中一角的对边对应相等的两个三角形全等(简记为:A.A
21、.S.);(5)两边和它们的夹角对应相等的两个三角形全等(简记为:S.A.S.)若是直角三角形,则除了上述五种方法外,还有一种方法:斜边和一条直角边对应相等的两个直角三角形全等(简记为:H.L.)全等全等全等6证全等三角形的思路7全等三角形的性质(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等8等腰三角形的性质和判定(1)性质:等腰三角形的两底角相等,简写成“等边对等角”(2)判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等简称“等角对等边”,它的逆定理应该是“等边对等角”9等边三角形(1)等边三
22、角形的各个角都相等,并且每一个角都等于60.(2)三个角都相等的三角形是等边三角形;有一个角等于60的等腰三角形是等边三角形10尺规作图把只能使用 这两种工具作几何图形的方法称为尺规作图没有刻度的直尺和圆规11常见的基本作图(1)作 等于已知线段;(2)作一个角等于角;(3)作已知角的平分线;(4)过已知点作已知直线的 ;(5)作已知线段的垂直 线12互逆命题在两个命题中,如果第一个命题的条件是第二个命题的 ,而第一个命题的结论是第二个命题的 ,那么这两个命题叫做互逆命题13逆命题每一个命题都有逆命题,只要将原命题的条件改成 ,并将结论改成 ,便可以得到原命题的逆命题一条线段已知垂线平分结论条
23、件结论条件注意 每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可以得到原命题的逆命题但原命题正确,它的逆命题未必正确如对于真命题“如果两个角都是直角,那么这两个角相等”的逆命题“如果两个角相等,那么这两个角是直角”,此命题就是一个假命题14逆定理如果一个定理的逆命题经过证明是真命题,那么,它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的 定理注意 每个命题都有逆命题,但一个定理不一定有逆定理如“对顶角相等”就没有逆定理逆15垂直平分线到线段两端点的距离相等的点在这条线段的 . 它的逆定理是:线段垂直平分线上的点到 .注意 前面是线段垂直平分线的判定,后面是线
24、段垂直平分线的性质16角的平分线角的平分线上的点到角的两边的距离相等它的逆定理是:到角的两边距离相等的点在 .注意 前面是角平分线的性质,后面是角平分线的判定垂直平分线上线段两端点的距离相等角的平分线上例1 下列命题中是假命题的是()A三角形的内角和是180B多边形的外角和都等于360C五边形的内角和是900D三角形的一个外角等于和它不相邻的两个内角的和考点一 判断命题真假考点讲练考点讲练【解析】要说明一个命题是真命题,需要经过证明它是正确的对于A、B、D来说,都是经过证明,被认为是正确的,而五边形的内角和是540,所以C不正确,故选C.C 命题这部分内容的概念多、理论性强,看似杂乱无章,其实
25、只要抓住三点,一切问题也就迎刃而解主要是识别命题、找出命题的条件和结论、会判断命题的真假方法总结1.下列命题:两点确定一条直线;两点之间,线段最短;对顶角相等;内错角相等;其中真命题的个数是()A1个B2个C3个D4个针对训练CDFDEEFDEF角角角边边边AC=AB=BC=A= B=C=例2 如图,已知ABCDEF,请指出图中对应边和对应角.ABCFDE【解析】根据“全等三角形的对应边相等,对应角相等”解题.考点二 全等三角形的性质 两个全等三角形的长边与长边,短边与短边分别是对应边,大角与大角,小角与小角分别是对应角.有对顶角的,两个对顶角一定为一对对应角.有公共边的,公共边一定是对应边.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 师大 八年 级数 上册 期末 复习 课件
限制150内