催化剂表征与测试课件.ppt
《催化剂表征与测试课件.ppt》由会员分享,可在线阅读,更多相关《催化剂表征与测试课件.ppt(115页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、催化剂表征与测试工业催化工业催化多媒体讲义多媒体讲义催化剂表征与测试 表面积表面积 孔结构孔结构 颗粒性质颗粒性质 机械性质和热性质机械性质和热性质 本体性质(组成与相结构)本体性质(组成与相结构) 表面性质表面性质 活性活性 催化剂表征与测试催化剂表征与测试引 言 三方面的性质:三方面的性质: 化学组成和结构化学组成和结构 元素组成、晶相结构和含量、表面组成元素组成、晶相结构和含量、表面组成 纹理组织及机械性质纹理组织及机械性质 纹理组织:颗粒大小和形状、孔结构、表面积、物纹理组织:颗粒大小和形状、孔结构、表面积、物 相间相互排列的方式相间相互排列的方式 机械性质:工业应用必备的性质机械性质
2、:工业应用必备的性质 抗磨性能、机械强度、抗热冲击性抗磨性能、机械强度、抗热冲击性 活性活性 在给定条件下,催化剂促进某种化学转化的能力。在给定条件下,催化剂促进某种化学转化的能力。催化剂表征与测试催化剂表征与测试第一节 表面积 一、孔、内表面、外表面一、孔、内表面、外表面 固体催化剂颗粒是微粒子的聚结体。固体催化剂颗粒是微粒子的聚结体。微粒子:微粒子:10100 m ,多孔固体,孔半径,多孔固体,孔半径1.515nm, 中孔或介孔(中孔或介孔(mesopore)催化剂颗粒:催化剂颗粒:微粒子挤压或粘结生成的有一定强度微粒子挤压或粘结生成的有一定强度的颗粒。微粒子之间的空隙形成半径的颗粒。微粒
3、子之间的空隙形成半径15nm的大孔。的大孔。多孔材料的分类:多孔材料的分类:(1)微孔材料:孔径微孔材料:孔径2nm,micropores(2)介孔材料:介孔材料:2孔径孔径50nm,macropores催化剂表征与测试催化剂表征与测试一、孔、内表面、外表面 固体催化剂颗粒的孔的形成示意图固体催化剂颗粒的孔的形成示意图催化剂表征与测试催化剂表征与测试孔、内表面、外表面 孔的来源:孔的来源:微粒子固有的孔(中孔和小孔)微粒子固有的孔(中孔和小孔) 微粒子间隙的孔(大孔)微粒子间隙的孔(大孔) 构成催化剂的颗粒内表面。构成催化剂的颗粒内表面。内表面积:内表面积:催化剂颗粒内孔隙的表面积。催化剂颗粒
4、内孔隙的表面积。 内表面积占催化剂总表面积的内表面积占催化剂总表面积的95%以上。以上。 其中,中孔和小孔占绝大部分。其中,中孔和小孔占绝大部分。外表面积:外表面积:催化剂颗粒外表面的面积。催化剂颗粒外表面的面积。 高比表面的催化剂:比表面积高比表面的催化剂:比表面积1001000m2/g 外表面积可以忽略不计。外表面积可以忽略不计。催化剂表征与测试催化剂表征与测试三、BET方程 1938年年Brunauer, Emmett, Teller提出了对提出了对Langmuir模型的修正,即:多分子层吸附模型模型的修正,即:多分子层吸附模型与之相应的吸附等温线方程,即:与之相应的吸附等温线方程,即:
5、BET方程方程 催化剂表征与测试催化剂表征与测试)/)(1(1)(00ppCppCpVVm00) 1(1)(CpVpCCVppVpmmmmmVCVCCV111斜率截距四、BET法测算表面积 催化剂表征与测试催化剂表征与测试最常用的方法最常用的方法: N2吸附法吸附法 BET测定中常用吸附质的表观分子截面积(nm2)吸附质温度K实验值计算值推荐值氮770.1620.1620.162氩770.147 0.0410.1380.138氪770.203 0.0330.1520.202正丁烷2730.448 0.0980.3230.444苯2930.436 0.0980.3200.430一些典型的工业催化
6、剂的比表面积 催化剂表征与测试催化剂表征与测试催化剂或载体用途比表面积, m2/gREHY沸石沸石裂化,载体裂化,载体1000硅胶硅胶载体载体400600 -Al2O3 载体载体200350活性碳活性碳载体载体5001000SiO2-Al2O3裂化,载体裂化,载体200500Co-Mo/Al2O3加氢脱硫加氢脱硫200300Ni/Al2O3加氢加氢200300Fe-Al2O3-K2O合成氨合成氨10V2O5部分氧化部分氧化1Pt氨氧化氨氧化0.01第二节 孔结构(孔隙组织) 一、比孔容的测定一、比孔容的测定 方法:汞方法:汞-氦法氦法 原理:原理:在体积为在体积为V的容器中装满重量为的容器中装
7、满重量为W的催化剂颗的催化剂颗粒或粉末,抽真空后,充入氦气,测定出充入氦的体积粒或粉末,抽真空后,充入氦气,测定出充入氦的体积VHe,即:容器内除去催化剂骨架体积以外的所有空间体,即:容器内除去催化剂骨架体积以外的所有空间体积。然后,将氦抽出,并在常压下充入汞,测定出充入积。然后,将氦抽出,并在常压下充入汞,测定出充入汞的体积汞的体积VHg,即:除去催化剂骨架体积和颗粒中的孔隙,即:除去催化剂骨架体积和颗粒中的孔隙体积以后容器中剩余的体积(由于汞对大多数表面不润体积以后容器中剩余的体积(由于汞对大多数表面不润湿,在常压下不渗入直径湿,在常压下不渗入直径14 m 的孔)。的孔)。也就是说,催化剂
8、的孔容:也就是说,催化剂的孔容:V孔孔 VHe VHg催化剂表征与测试催化剂表征与测试催化剂的比孔容:催化剂的比孔容:W孔VVp压汞仪催化剂表征与测试催化剂表征与测试压汞仪的核心部分示意图压汞仪的核心部分示意图 压汞仪测定结果:汞压入曲线压汞仪测定结果:汞压入曲线 汞压入体积压力曲线汞压入体积压力曲线 汞压入体积孔径曲线汞压入体积孔径曲线汞压入曲线催化剂表征与测试催化剂表征与测试 汞压入曲线示意图汞压入曲线示意图孔径分布曲线催化剂表征与测试催化剂表征与测试 孔径分布曲线孔径分布曲线: D(r)-r关系曲线关系曲线四、氮吸附法与压汞法的比较催化剂表征与测试催化剂表征与测试氮吸附法:氮吸附法:适用
9、于半径为适用于半径为1.520nm的孔的孔压汞法:压汞法:适用于半径为适用于半径为5nm75 m的孔的孔两种方法比较:两种方法比较: 对介孔到不太大的大孔(对介孔到不太大的大孔(330nm), 均能给出较好的结果;均能给出较好的结果; 两种方法较为吻合。两种方法较为吻合。 相互补充,相互结合使用比较好相互补充,相互结合使用比较好四、氮吸附法与压汞法的比较催化剂表征与测试催化剂表征与测试 两种方法得到的孔径分布结果比较两种方法得到的孔径分布结果比较四、氮吸附法与压汞法的比较催化剂表征与测试催化剂表征与测试 水煤气变换催化剂水煤气变换催化剂Fe3O4-Cr2O3孔径分布结果孔径分布结果细孔部分(左
10、半部)细孔部分(左半部)N2吸附法吸附法大孔部分(右半部)大孔部分(右半部)压汞法压汞法五、微孔体积的测定催化剂表征与测试催化剂表征与测试 微孔:微孔:孔半径孔半径90质量质量,%335252512第四节 机械性质和热性质 一、机械性质一、机械性质 催化剂在运输、装填、活化和使用过程中会受到机催化剂在运输、装填、活化和使用过程中会受到机械应力、碰撞和摩擦,要求具有一定的机械强度。械应力、碰撞和摩擦,要求具有一定的机械强度。机械性能:机械性能: (1)压碎强度;)压碎强度; (2)磨损率(大颗粒固定床催化剂);)磨损率(大颗粒固定床催化剂); (3)磨耗率(小颗粒流化床催化剂)。)磨耗率(小颗粒
11、流化床催化剂)。催化剂表征与测试催化剂表征与测试1、压碎强度催化剂颗粒强度实验仪催化剂颗粒强度实验仪轴向压碎强度:轴向压碎强度:10100kg/cm2径向压碎强度:径向压碎强度:10100kg/cm催化剂表征与测试催化剂表征与测试1、压碎强度催化剂颗粒批量压碎实验仪催化剂颗粒批量压碎实验仪压碎率压碎率1时的最高压力时的最高压力催化剂表征与测试催化剂表征与测试2、磨损率转鼓式磨损率仪转鼓式磨损率仪内筒转速内筒转速100010000rpm外筒转速外筒转速30200rpm规定时间内磨成细粉的规定时间内磨成细粉的质量与样品质量之比。质量与样品质量之比。催化剂表征与测试催化剂表征与测试3、磨耗指数磨耗指
12、数试验仪磨耗指数试验仪磨耗指数磨耗指数100A/BA 粒 径 小 于 规 定 值 粒 径 小 于 规 定 值(20 m)的细粉质量的细粉质量;B样品质量。样品质量。催化剂表征与测试催化剂表征与测试二、热性质1、热导率、热导率 良好的导热性能:良好的导热性能:保证热量顺畅地传入和传出催化剂保证热量顺畅地传入和传出催化剂床层,从而保证反应床层的温度均匀或温度梯度均匀。床层,从而保证反应床层的温度均匀或温度梯度均匀。 对大多数催化剂来说,流体对热导率的附加贡献主要对大多数催化剂来说,流体对热导率的附加贡献主要是热转导的贡献,辐射和对流传热可以忽略不计。是热转导的贡献,辐射和对流传热可以忽略不计。 热
13、导率:一般气体和有机蒸气热导率:一般气体和有机蒸气 0.010.03; 氢气氢气 0.18; 有机液体是蒸汽的有机液体是蒸汽的10100倍,倍, 非极性液体非极性液体0.080.20,极性液体高,极性液体高23倍。倍。催化剂表征与测试催化剂表征与测试二、热性质2、抗热冲击性能、抗热冲击性能 在催化剂制备、使用、再生过程中,温度的剧烈变在催化剂制备、使用、再生过程中,温度的剧烈变化使他受到热冲击,从而引起催化剂烧结、失活、颗粒化使他受到热冲击,从而引起催化剂烧结、失活、颗粒破碎、床层压降升高甚至床层堵塞。破碎、床层压降升高甚至床层堵塞。热冲击性能评价指标:热冲击性能评价指标: 裂纹的产生:抗热冲
14、击参数裂纹的产生:抗热冲击参数R1 裂纹扩展:抗热冲击参数裂纹扩展:抗热冲击参数Rp催化剂表征与测试催化剂表征与测试第五节 本体性质 一、组成一、组成 组成分析:组成分析:催化剂的元素组成进行定性和定量分析。催化剂的元素组成进行定性和定量分析。 生产制备过程的控制生产制备过程的控制 产品的最终分析产品的最终分析 使用过程的分析:组分变化和污染物分析使用过程的分析:组分变化和污染物分析 污染物:污染物: (1)灰尘和外来碎屑;)灰尘和外来碎屑; (2)反应物料中带来的毒物,如)反应物料中带来的毒物,如S、As、Pb和和Cl等;等; (3)金属污染物,如)金属污染物,如Ni、Fe、V、Ca、Mg、
15、Na、K等;等; (4)结焦和缩聚物。)结焦和缩聚物。催化剂表征与测试催化剂表征与测试一、组成1、溶液方法、溶液方法 “湿法湿法”组成分析:组成分析:破环性化学分析破环性化学分析 将催化剂的全部或部分元素组成转化成溶液,然后将催化剂的全部或部分元素组成转化成溶液,然后进行定性和定量分析。进行定性和定量分析。 通常用浓硫酸、硝酸或盐酸溶解样品,制成水溶液。通常用浓硫酸、硝酸或盐酸溶解样品,制成水溶液。 分析方法:分析方法:容量法(化学滴定、络合滴定)容量法(化学滴定、络合滴定) 比色法(分光光度法)比色法(分光光度法) 原子吸收法(原子吸收法(AAS、ICP) 电化学法(库仑法、极谱法)电化学法
16、(库仑法、极谱法)催化剂表征与测试催化剂表征与测试一、组成2、光谱方法、光谱方法 “干法干法”组成分析:组成分析:非破环性分析非破环性分析 原子发射光谱原子发射光谱 X射线荧光分析射线荧光分析 电子探针分析电子探针分析 固体核磁共振波谱分析固体核磁共振波谱分析 XPS催化剂表征与测试催化剂表征与测试二、相结构1、X射线衍射方法(XRD) X-Ray Diffraction 原理:一束平行的波长为一束平行的波长为 的单色的单色X光,照射到两个间距光,照射到两个间距为为d 的相邻晶面上,发生弹性反射,弹性反射波相互干涉,产的相邻晶面上,发生弹性反射,弹性反射波相互干涉,产生衍射现象。设入射角和反射
17、角为生衍射现象。设入射角和反射角为 ,两个晶面反射的射线干两个晶面反射的射线干涉加强的条件是二者的光程差等于波长的整数倍,即:涉加强的条件是二者的光程差等于波长的整数倍,即:Bragg方程方程 2d sin = n 每一种晶体物质有其特有的每一种晶体物质有其特有的X射线衍射图谱,由此可以进射线衍射图谱,由此可以进行定性分析和定量分析。行定性分析和定量分析。 X射线衍射法是催化剂晶相结构分析最常用的手段。射线衍射法是催化剂晶相结构分析最常用的手段。缺点和不足:检出限高检出限高 X射线衍射法对化合物的最小检出线为射线衍射法对化合物的最小检出线为5。催化剂表征与测试催化剂表征与测试几种氧化铝的X射线
18、衍射图催化剂表征与测试催化剂表征与测试X射线衍射法用于催化剂的分析MCM-41超大孔分子筛XRD分析 MCM-41的XRD图 SAPO-34的XRD图说明:MCM-41分子筛的结构体系并不是严格意义上的六方晶系,超大孔的孔壁实际上是无定形的,局部原子的排列也类似于无定形的硅铝酸盐。 催化剂表征与测试催化剂表征与测试SBA-15的XRD分析 SB-15的XRD图 a 焙烧前,焙烧前,DMF为溶剂为溶剂 b 焙烧后,焙烧后,DMF为溶剂为溶剂 c 焙烧前,无溶剂焙烧前,无溶剂 d 焙烧后,无溶剂焙烧后,无溶剂催化剂表征与测试催化剂表征与测试 加氢催化剂失活原因的加氢催化剂失活原因的XRDXRD分析
19、分析再生催化剂的再生催化剂的XRD谱图谱图 A、B、C再生剂再生剂 D新鲜催化剂新鲜催化剂 说明:说明:再生后出现再生后出现MoS2的聚的聚集相集相 X射线衍射法用于催化剂的分析2、热分析2、热分析、热分析(Thermal Analysis) 原理:在程序升温的过程中测定样品的性质随温度原理:在程序升温的过程中测定样品的性质随温度的变化,从而获取样品晶相和结构变化的信息。的变化,从而获取样品晶相和结构变化的信息。(1)差热分析()差热分析(DTA)和扫描量热分析()和扫描量热分析(DSC) DTAdifferential thermal analysis DSCdifferential sca
20、nning calorimetry 原理:原理:在按一定的速率加热和冷却的过程中,测量试在按一定的速率加热和冷却的过程中,测量试样和参比物之间的温度差(或热量差)。样和参比物之间的温度差(或热量差)。 任何伴有放热或吸热的转变或化学反应都可以导致温差任何伴有放热或吸热的转变或化学反应都可以导致温差或热量差。由此可以获得有关相变、晶相转变、固相反应、或热量差。由此可以获得有关相变、晶相转变、固相反应、分解反应、氧化或还原等方面的信息。分解反应、氧化或还原等方面的信息。催化剂表征与测试催化剂表征与测试Ni(OH)2分解的差热分析图催化剂表征与测试催化剂表征与测试2、热分析(2)热重分析()热重分析
21、(TGA) TGAthermal gravity analysis 原理:原理:测量试样在程序升温过程中质量的变化。测量试样在程序升温过程中质量的变化。 任何伴有质量变化的转变或化学反应都可以用热重分析。任何伴有质量变化的转变或化学反应都可以用热重分析。由此可以获得有关结晶水、固相反应、分解反应、固气反应、由此可以获得有关结晶水、固相反应、分解反应、固气反应、氧化或还原等方面的信息。氧化或还原等方面的信息。 例如:热分析可以获得例如:热分析可以获得Ni(OH)2的热分解温度、失水量、的热分解温度、失水量、失水时的反应热、失水后的化学式等。失水时的反应热、失水后的化学式等。 此外,在氢气气氛中还
22、可以进行程序升温还原(此外,在氢气气氛中还可以进行程序升温还原(TPR),得到还原信息。如:还原温度,还原程度,难易等。得到还原信息。如:还原温度,还原程度,难易等。 也可用于吡啶或喹啉的程序升温脱附(也可用于吡啶或喹啉的程序升温脱附(TPD),测定表),测定表面酸性。面酸性。催化剂表征与测试催化剂表征与测试Ni(OH)2分解的热重分析图催化剂表征与测试催化剂表征与测试图1 乙酰丙酮钯(1.8 mg)在空气及氩气中的TG-DTA 曲线H2氛围第六节 表面性质 一、组成一、组成 电子能谱方法:电子能谱方法:通过分析原子的电子结构来鉴定固体表通过分析原子的电子结构来鉴定固体表面的原子组成和价态。面
23、的原子组成和价态。 电子能谱:电子能谱: electron spectroscopy Auger电子能谱(电子能谱(AES):): Auger electron spectroscopy X射线光电子能谱:射线光电子能谱:XPSX-Ray Photon spectroscopy; 或或ESCAElectron Spectroscopy for Chemical Anslysis.催化剂表征与测试催化剂表征与测试一些元素的Auger电子能谱催化剂表征与测试催化剂表征与测试X光电子能谱的性质和应用催化剂表征与测试催化剂表征与测试(2) X光电子能谱的应用光电子能谱的应用 A. 根据结合能(根据结合
24、能(Eb)可以进行样品的元素鉴定。)可以进行样品的元素鉴定。第二周期元素的1s电子结合能催化剂表征与测试催化剂表征与测试X光电子能谱的应用催化剂表征与测试催化剂表征与测试B. 结合能(结合能(Eb)变化所揭示的结构或价态变化信)变化所揭示的结构或价态变化信息。息。 化学因素引起的化学因素引起的X光电子的光电子的“能量位移能量位移”称为称为“化学位移化学位移”。 “化学位移化学位移”能够判断原子的状态,所处的化能够判断原子的状态,所处的化学环境及分子结构。学环境及分子结构。Cu/沸石催化剂还原过程中Cu 2p3/2谱线的位移第四章第四章 催化剂表征与测试催化剂表征与测试a. Cu/沸石催化剂,沸
25、石催化剂,Cu2+离子;离子;b. 用用CO还原,变成还原,变成Cu+离子;离子;c.1nm的的Cu簇用氢气或簇用氢气或CO还原,还原,主峰位置向结合能大的方向位主峰位置向结合能大的方向位移。移。d. 用氢气还原,变成用氢气还原,变成Cu+离子。离子。X光电子能谱的应用第四章第四章 催化剂表征与测试催化剂表征与测试C. 元素的相对浓度测定元素的相对浓度测定 根据元素的根据元素的XPS特征峰的相对灵敏度因子,从特征峰的相对灵敏度因子,从特征峰的高度或峰面积可以测定各种元素的相对浓特征峰的高度或峰面积可以测定各种元素的相对浓度。度。D. XPS可以探测表面可以探测表面120层的组成层的组成 AES
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 催化剂 表征 测试 课件
限制150内