北师大版八年级数学下册-全册单元复习总结课件.ppt
《北师大版八年级数学下册-全册单元复习总结课件.ppt》由会员分享,可在线阅读,更多相关《北师大版八年级数学下册-全册单元复习总结课件.ppt(151页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、要点梳理考点讲练课堂小结课后作业 小结与复习第一章 三角形的证明北师大版八年级下册单元复习课件(4)_、底边上的中线和底边上的高互相重合,简称“三线合一”.顶角平分线(3)两个_相等,简称“等边对等角”;底角(2)轴对称图形,等腰三角形的顶角平分线所在的直线是它的对称轴;一、等腰三角形的性质及判定1.性质(1)两腰相等;要点梳理要点梳理2.判定(1)有两边相等的三角形是等腰三角形;(2)如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简写成“_”).等角对等边二、等边三角形的性质及判定1.性质等边三角形的三边都相等;等边三角形的三个内角都相等,并且每一个角都等于_;是轴对称图形,对称
2、轴是三条高所在的直线;任意角平分线、角对边上的中线、对边上的高互相重合,简称“三线合一”.602.判定三条边都相等的三角形是等边三角形.三个角都相等的三角形是等边三角形.有一个角是60的_是等边三角形.等腰三角形(5)在直角三角形中,30的角所对的直角边等于斜边的一半.u直角三角形的性质定理1 直角三角形的两个锐角_.互余u直角三角形的判定定理1 有两个角_的三角形是直角三角形.互余三、直角三角形 勾股定理表达式的常见变形:a2c2b2, b2c2a2, . 勾股定理分类计算:如果已知直角三角形的两边是a,b(且ab),那么,当第三边c是斜边时,c_;当a是斜边时,第三边c_.四、勾股定理 勾
3、股定理:直角三角形两条直角边的平方和等于斜边的 . 即:对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c ,那么一定有 .平方 注意 只有在直角三角形里才可以用勾股定理,运用时要分清直角边和斜边222222,cabacbbcaa2b2c222ab22ab五、勾股定理的逆定理 如果三角形的三边长a、b、c有关系:a2b2 ,那么这个三角形是直角三角形利用此定理判定直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的 ;(3)比较最大边的平方与另两边的平方和是否相等,若相等,则说明这个三角形是 三角形到目前为止判定直角三角形的方法有:(1)说明三角形中有一个角是
4、;(2)说明三角形中有两边互相 ;(3)用勾股定理的逆定理平方和直角直角垂直 注意 运用勾股定理的逆定理时,要防止出现一开始就写出a2b2c2之类的错误c21互逆命题在两个命题中,如果第一个命题的条件是第二个命题的 ,而第一个命题的结论是第二个命题的 ,那么这两个命题叫做互逆命题2逆命题每一个命题都有逆命题,只要将原命题的条件改成 ,并将结论改成 ,便可以得到原命题的逆命题结论条件结论条件六、逆命题和互逆命题3逆定理如果一个定理的逆命题经过证明是真命题,那么,它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的 定理注意 每个命题都有逆命题,但一个定理不一定有逆定理如“对顶角相等”就没
5、有逆定理逆1.线段垂直平分线的性质定理: 线段中垂线上的点到线段两端点的距离相等.2.逆定理: 到线段两端点的距离相等的点在线段的垂直平分线上.七、线段的垂直平分线3常见的基本作图(1)过已知点作已知直线的 ;(2)作已知线段的垂直 线垂线平分4.三角形的三边的垂直平分线的性质:三角形的三边的垂直平分线相交于一点,且到三个顶点的距离相等.1.性质定理:角平分线上的点到角两边的距离相等.2.判定定理:在一个角的内部,到角两边距离相等的点在角的平分线.3.三角形的三条内角平分线的性质:三角形的三条内角平分线相交于一点,且到三边的距离相等.八、角平分线的性质与判定考点一 等腰(等边)三角形的性质与判
6、定 例1 如图所示,在ABC中,AB=AC,BDAC于D.求证: BAC = 2DBC.ABCD)1 2E【分析】根据等腰三角形“三线合一”的性质,可作顶角BAC的平分线,来获取角的数量关系.考点讲练考点讲练ABCD)1 2E 证明:作BAC的平分线AE,交BC于点E,如图所示, 则11=2=.2BACAB=AC, AEBC. 2+ ACB=90 . BDAC, DBC+ ACB=90 . 2= DBC. BAC= 2DBC. 等腰三角形的性质与判定是本章的重点之一,它们是证明线段相等和角相等的重要依据,等腰三角形的特殊情形等边三角形的性质与判定应用也很广泛,有一个角是30的直角三角形的性质是
7、证明线段之间的倍份关系的重要手段.方法总结1. 如图,在ABC中,AB=AC时,(1)ADBC, _= _;_=_.(2) AD是中线,_; _= _.(3) AD是角平分线,_ _;_=_.BACDBADCADBDCDADBCBADCADADBCBDCD针对训练例2 在ABC中,已知BD是高,B90,A、B、C的对边分别是a、b、c,且a3,b4,求BD的长解:B90,b是斜边,则在RtABC中,由勾股定理,得又SABC bBD ac,2222437,cba673 7.84acBDb1212考点二 勾股定理 在直角三角形中,已知两边的长求斜边上的高时,先用勾股定理求出第三边,然后用面积求斜边
8、上的高较为简便在用勾股定理时,一定要清楚直角所对的边才是斜边,如在本例中不要受勾股数3,4,5的干扰方法总结2已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或25针对训练D例3 已知在ABC中,A,B,C的对边分别是a,b,c,an21,b2n,cn21(n1),判断ABC是否为直角三角形考点三 勾股定理的逆定理解:由于a2b2(n21)2(2n)2n42n21, c2(n21)2 n42n21, 从而a2b2c2, 故可以判定ABC是直角三角形 运用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:先判断哪条边最大;分别用代数方法计算
9、出a2b2和c2的值(c边最大);判断a2b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形方法总结3.已知下列图形中的三角形的顶点都在正方形的格点 上,可以判定三角形是直角三角形的有_针对训练 (2)(4)例4 判断下列命题的真假,写出这些命题的逆命题并判断它们的真假(1)如果a0,那么ab0;(2)如果点P到线段AB两端点的距离相等,那么P在线段AB的垂直平分线上解:(1)原命题是真命题原命题的逆命题是:如果ab0,那么a0.逆命题为假(2)原命题是真命题原命题的逆命题是:如果P在线段AB的垂直平分线上,那么点P到线段AB两端点的距离相等其逆命题也是真命题考点四 命题与
10、逆命题针对训练4.写出下列命题的逆命题,并判断其真假:(1)若x=1,则x2=1;(2)若|a|=|b|,则a=b.解:(1)逆命题:若x2=1,则x=1是假命题.(2)逆命题:若a=b,则|a|=|b|是真命题.解: AD 是BC 的垂直平分线, AB =AC,BD=CD. 点C 在AE 的垂直平分线上, AC =CE,AB=AC=CE, AB+BD=DE.例5 如图,AD是BC的垂直平分线,点C 在AE 的垂直平分线上,AB,AC,CE 的长度有什么关系?AB+BD与DE 有什么关系?A B C D E 考点五 线段的垂直平分线5.如图,在ABC中,DE是AC的垂直平分线,AC=5厘米,A
11、BD的周长等于13厘米,则ABC的周长是 .ABDEC18厘米 常常运用线段的垂直平分线的性质“线段垂直平分线上的点到线段两端的距离相等”进行线段之间的转换来求线段之间的关系及周长的和差等,有时候与等腰三角形的“三线合一”结合起来考查.方法总结针对训练6.下列说法:若点P、E是线段AB的垂直平分线上两点,则EAEB,PAPB;若PAPB,EAEB,则直线PE垂直平分线段AB;若PAPB,则点P必是线段AB的垂直平分线上的点;若EAEB,则经过点E的直线垂直平分线段AB其中正确的有 (填序号). 例6 如图,在ABC中,AD是角平分线,且BD = CD, DEAB, DFAC.垂足分别为E ,
12、F.求证:EB=FC.ABCDEF【分析】先利用角平分线的性质定理得到DE=DF,再利用“HL”证明RtBDE RtCDF.考点六 角平分线的性质与判定ABCDEF证明: AD是BAC的角平分线, DEAB, DFAC, DE=DF, DEB=DFC=90 .在RtBDE 和 RtCDF中,DE=DF,BD=CD, RtBDE RtCDF(HL). EB=FC.8.ABC中, C=90, AD平分CAB,且BC=8,BD=5,则点D到AB的距离是 .ABCD3E7. 如图,DEAB,DFBG,垂足分别是E,F, DE =DF, EDB= 60,则 EBF= 度,BE= .60BFEBDFACG
13、针对训练9. 如图所示,已知ABC中,PEAB交BC于点E,PFAC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分BAC,并说明理由解:AD平分BAC理由如下:D到PE的距离与到PF的距离相等,点D在EPF的平分线上12又PEAB,13同理,2434,AD平分BACABCEFD(3412P 考点七 本章的数学思想与解题方法例7 等腰三角形的周长为20cm,其中两边的差为8cm,求这个等腰三角形各边的长.【分析】要考虑腰比底边长和腰比底边短两种情况.解:若腰比底边长,设腰长为xcm,则底边长为(x-8)cm,根据题意得 2x+x-8=20, 解得 x= ,
14、 x-8= ;若腰比底边短,设腰长为ycm,则底边长为(y+8)cm,根据题意得2y+y+8=20,解得y=4, y+8=12,但4+4=8b,那么 a + c ,且 a-c .b + cb-c 2.性质2:如果a b,c 0,那么 ac bc , .acbc 3.性质3:如果a b,c 0,那么 ac bc , .acbc b,b c,那么a c.不等号一元一次不等式一元一次不等式组不等式的解集不等式组的解集不等式 解一元一次不等式和解一元一次方程类似,有 等步骤.三、解一元一次不等式去分母去括号移项合并同类项系数化为一 求ax+b0(或0(或bxaaxb无解六、用数轴表示一元一次不等式(组
15、)的解集( b,bc B.若ab,则acbcC.若ab,则ac2bc2 D.若ac2bc2,则abD考点一 运用不等式的基本性质求解【解析】选项A,由ab,bc ;选项B,ab,当c=0时,ac=bc,不能根据不等式的性质确定acbc ;选项C,ab,当c=0时,ac2=bc2,不能根据不等式的性质确定ac2bc2;选项D,ac2bc2,隐含c0 ,可以根据不等式的性质在不等式的两边同时除以正数c2,从而确定ab. 1.已知ab,则下列各式不成立的是 ( ) A.3a3b B.-3a-3b C.a-3b-3 D.3+a2的解集为 则a的取值范围是( ) A.a0 B.a1 C.a0 D.a12
16、,1xaB例2 解不等式: .并把解集表示在数轴上.2192136xx解:去分母,得 2(2x-1)-(9x+2)6, 去括号,得 4x-2-9x-26, 移项,得 4x-9x6+2+2, 合并同类项,得 -5x10, 系数化1,得 x-2. 不等式的解集在数轴上表示如图所示.01-2 -1-3-4-523考点二 解一元一次不等式3.不等式2x-16的正整数解是 . 1,2,34.已知关于x的方程2x+4=m- x的解为负数,则m的取值范围是 . m4针对训练方法总结 先求出不等式的解集,然后根据“大于向右画,小于向左画,含等号用实心圆点,不含等号用空心圆圈”的原则在数轴上表示解集.例3 如图
17、是一次函数y=kx+b的图象,当y2时,x的取值范围是 ( )考点三 一元一次不等式与一次函数关系Ax1 Bx1 Cx3 Dx3 【解析】一次函数y=kx+b经过点(3,2),且函数值y随x的增大而增大,当y2时,x的取值范围是x3C针对训练15006. 已知直线y=2xb经过点(2,2),求关于x的不等式2xb0的解集.解:把点(2,2)代入直线y=2xb, 得2=4b, 解得 b=6. 故直线表达式为y=2x6, 解得x3.例4 解不等式组 把解集在数轴上表示出来,并将解集中的整数解写出来.236,254,3xxxx解:解不等式,得 x3, 解不等式,得7,5x 所以这个不等式组的解集是
18、解集在数轴上表示如下: 73,5x考点四 解一元一次不等式组 通过观察数轴可知该不等式组的整数解为2,3.23104757.使不等式x-12与3x-7 B.m C.m D.m202xmxm23232323C考点五 不等式、不等式组的实际应用例4 某小区计划购进甲、乙两种树苗,已知甲、乙两种树苗每株分别为8元、6元.若购买甲、乙两种树苗共360株,并且甲树苗的数量不少于乙树苗的一半,请你设计一种费用最少的购买方案.解:设购买甲树苗的数量为x株,依题意得解得 x120. 购买甲树苗120株,乙树苗240株,此时费用最省.1(360),2xx甲树苗比乙树苗每株多2元,要节省费用,则要尽量少买甲树苗.
19、 又x最小为120, 方法总结 解不等式的应用问题的步骤包括审、设、列、解、找、答这几个环节,而在这些步骤中,最重要的是利用题中的已知条件,列出不等式(组),然后通过解出不等式(组)确定未知数的范围,利用未知数的特征(如整数问题),依据条件,找出对应的未知数的确定数值,以实现确定方案的解答.一元一次不等式(组)不 等 式不等式的解集一元一次不 等 式一元一次不等式组解 集数轴表示不等式的基本性质解 集数轴表示课堂小结课堂小结解法解法实际应用与一次函数关系要点梳理考点讲练课堂小结课后作业 小结与复习第三章 图形的平移与旋转一、平移的特征1对应线段 ;对应角 ; 图形的形状和大小都不发生改变2对应
20、点所连的线段平行且相等平行且相等相等要点梳理要点梳理(1)原图形向左(右)平移a个单位长度:(a0)向右平移a个单位(2)原图形向上(下)平移b个单位长度:(b0)原图形上的点P(x,y) 向左平移a个单位原图形上的点P (x,y) P1(x+a,y)P2(x-a,y)向上平移b个单位原图形上的点P(x,y) 向下平移b个单位原图形上的点(x,y) P3(x,y+b)P4(x,y-b)二、图形在坐标系中的平移在平面直角坐标系中内,一个图形怎么移动,那么这个图形上各个点就怎么移动.三、旋转的特征1旋转过程中,图形上_ 按 旋转 2任意一对对应点与旋转中心的连线所成的角都是_,对应点到旋转中心的距
21、离都_3旋转前后对应线段、对应角分别_,图形的大小、形状_每一点都绕旋转中心同一旋转方向同样大小的角度旋转角相等相等不变1中心对称把一个图形绕着某一个点旋转_,如果它能与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点180四、中心对称2中心对称的特征中心对称的特征:在成中心对称的两个图形中,对应点所连线段都经过 ,并且被对称中心_3.中心对称图形把一个图形绕某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心对称中心平分考点一 平移例1 如图所示,下列四组图形中,有一组中的两个图形
22、经过平移其中一个能得到另一个,这组图形是 ( )DA B C D 【解析】紧扣平移的概念解题.考点讲练考点讲练 平移前后的图形形状和大小完全相同,任何一对对应点连线段平行(或共线)且相等.方法总结针对训练1.如图所示,DEF经过平移得到ABC,那么C的对应角和ED的对应边分别是 ( )A.F,ACB.BOD,BAC.F,BAD.BOD,ACC考点二 坐标系中的图形平移例2 如图,直角坐标系中,ABC的顶点都在网格点上,其 中,C点坐标为(1,2)(1)写出点A、B的坐标:A( , )、B( , );(2)将ABC先向左平移2个单位长度,再向上平移1个单位 长度,得到ABC,请画出相应图形,则
23、ABC的三个顶点 坐标分别是 A( , )、 B( , )、C( , );(3)求ABC的面积2-1430024-13【分析】(1)根据图形写出相应点的坐标即可;(2)画出平移后图形,根据图形解题即可,或是让三个点的横坐标减去2,纵坐标加1即可得到平移后相应点的坐标;(3)ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积.解:(2)平移后图形如图所示;(3)ABC的面积S=342 13 24=5 1212ABC方法总结 直角坐标系中的图形左右移动改变点的横坐标,即左减右加;上下平移改变点的纵坐标,即上加下减.求格点中图形的面积通常用割补法,常用
24、长方形的面积减去若干直角三角形的面积表示,或是转化为用几个比较容易求的三角形或四边形的面积和来表示.针对训练2.如图,在平面直角坐标系中,P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点为P1(a+6,b+2),(1)请画出上述平移后的A1B1C1,并写出点A、C、A1、C1的坐标;(2)求出以A、C、A1、C1为顶点的四边形的面积解:(1)A1B1C1如图所示;各点的坐标为:A (3,2)、C(2,0)、A1(3,4)、C1(4,2);(2)如图,连接AA1、CC1;AC1C的面积 AC1A1的面积 四边形ACC1A1的面积为7+7=14.答:四边形ACC1A1的面积为1411
25、7 27,2S 217 272S ;考点三 旋转的概念及性质的应用例3 (1)如图a,将AOB绕点O按逆时针方向旋转60 后得到COD,若AOB=15 ,则AOD的度数是( ) A. 15 B. 60 C. 45 D. 75 (2) 如图b ,4 4的正方形网格中, MNP绕某点旋转一定的角度,得到M1N1P1,其旋转中心是( )A. 点A B. 点B C. 点C D. 点DABODC图图aCN1M1NMP1DPAB图图bCB 【解析】(1)关键找出旋转角BOD=60 ;(2)作线段MM1与PP1 的垂直平分线,交点便是旋转中心.针对训练3.如图,在等腰RtABC中,点O是AB的中点,AC=4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 八年 级数 下册 单元 复习 总结 课件
限制150内