圆周角定理及应用课件.ppt
《圆周角定理及应用课件.ppt》由会员分享,可在线阅读,更多相关《圆周角定理及应用课件.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、24.1.4 24.1.4 圆周角圆周角 复习旧知:请说说我们是如何给复习旧知:请说说我们是如何给圆心角下定义的,试回答?圆心角下定义的,试回答?顶点在圆心的角叫圆心角。顶点在圆心的角叫圆心角。能仿照圆心角的定义,能仿照圆心角的定义, 给下图中象给下图中象ACB ACB 这样的角下个定义吗?这样的角下个定义吗?顶点顶点在在圆圆上,并且上,并且两边两边都和都和圆相交圆相交的角叫做的角叫做圆周角圆周角 问题探讨:问题探讨:判断下列图形中所画的判断下列图形中所画的PP是否为圆周角?并说明理由。是否为圆周角?并说明理由。PPPP不是不是是是不是不是不是不是顶点不顶点不在圆上。在圆上。顶点在圆上,顶点在
2、圆上,两边和圆相两边和圆相交。交。两边不和两边不和圆相交。圆相交。有一边和圆有一边和圆不相交。不相交。ABCO有没有圆周角?有没有圆周角?有没有圆心角?有没有圆心角?它们有什么共同的特点?它们有什么共同的特点?它们都对着它们都对着同一条弧同一条弧 当球员在当球员在B,D,EB,D,E处射门时处射门时, ,他所处的位置对球门他所处的位置对球门ACAC分别形成三个张角分别形成三个张角ABC, ABC, ADC,AEC.ADC,AEC.这三个角这三个角的大小有什么关系的大小有什么关系?.?.BACDEE EO OB BD DC CA A你能发现什么规律?你能发现什么规律?AC所对的圆周角所对的圆周角
3、 AEC ABC ADC的大小的大小有什么关系?有什么关系?实践活动实践活动 画画一个圆一个圆, ,再任意画一个圆周角再任意画一个圆周角, ,看一下圆心在什么位置看一下圆心在什么位置? ?圆心在一边上圆心在一边上圆心在角内圆心在角内圆心在角外圆心在角外 如图如图, ,观察圆周角观察圆周角ABCABC与圆心角与圆心角AOC,AOC,它们的大它们的大小有什么关系小有什么关系? ?OABCOABCOABC圆周角圆周角和和圆心角圆心角的关系的关系 1 1. .首先考虑第一种情况:首先考虑第一种情况: 当当圆心圆心O O在在圆周角圆周角(ABC)(ABC)的一边的一边(BC)(BC)上时上时, ,圆周角
4、圆周角ABCABC与圆心角与圆心角AOCAOC的大小关系的大小关系. .nAOCAOC是是ABOABO的外角,的外角,nAOC=B+A.AOC=B+A.nOA=OBOA=OB,OABCnA=B.A=B.AOC=2B.AOC=2B.即即 ABC = AOC.ABC = AOC.21你能写出这个命题吗你能写出这个命题吗? ?同弧同弧所对的所对的圆周角圆周角等于它所对等于它所对的的圆心角的一半圆心角的一半. .期望期望: :你你可要理解可要理解并掌握这并掌握这个模型个模型. . 第二种情况:第二种情况:如果圆心不在圆周角的如果圆心不在圆周角的一边上一边上, ,结果会怎样结果会怎样? ? 2.2.当当
5、圆心圆心O O在圆周角在圆周角(ABC)(ABC)的内部时的内部时, ,圆周角圆周角ABCABC与圆心角与圆心角AOCAOC的大小关的大小关系会怎样系会怎样? ?n提示提示: :能否转化为能否转化为1 1的情况的情况? ?n过点过点B B作直径作直径BD.BD.由由1 1可得可得: :O ABC = AOC.ABC = AOC.21能写出这个命题吗能写出这个命题吗? ?同弧同弧所对的所对的圆周角圆周角等于它所对等于它所对的的圆心角圆心角的一半的一半. .ABCDnABD = AOD, CBD = COD,ABD = AOD, CBD = COD,2121OABC 第三种情况:第三种情况:如果圆
6、心不在圆周角如果圆心不在圆周角的一边上的一边上, ,结果会怎样结果会怎样? ? 3.3.当当圆心圆心O O在圆周角在圆周角(ABC)(ABC)的外部的外部时时, ,圆周角圆周角ABCABC与圆心角与圆心角AOCAOC的大的大小关系会怎样小关系会怎样? ?n提示提示: :能否也转化为能否也转化为1 1的情况的情况? ?n过点过点B B作直径作直径BD.BD.由由1 1可得可得: :O ABC = AOC.ABC = AOC.21你能写出这个命题吗你能写出这个命题吗? ?同弧同弧所对的所对的圆周角圆周角等于它所对等于它所对的的圆心角圆心角的一半的一半. .DnABD = AOD,CBD = COD
7、,ABD = AOD,CBD = COD,2121ABCOABC巩固练习:巩固练习:如图,点如图,点A,B,C,DA,B,C,D在同一个圆上,四在同一个圆上,四边形边形ABCDABCD的对角线把的对角线把4 4个内角分成个内角分成8 8个角,这些角中哪些是相等的角?个角,这些角中哪些是相等的角?ABCD12345678.OBC 我们把顶点在圆心的周角等我们把顶点在圆心的周角等分成分成360360份时,每一份的份时,每一份的圆心角圆心角是是1 1的角。的角。 在同圆或等圆中,圆心角的度数和它所对的在同圆或等圆中,圆心角的度数和它所对的弧的度数相等弧的度数相等。 因为同圆中相等的圆心角所因为同圆中
8、相等的圆心角所对的弧相等,所以整个圆也被对的弧相等,所以整个圆也被等分成等分成360360份。我们把每一份这份。我们把每一份这样的样的弧弧叫做叫做1 1的弧。的弧。在同圆或等圆中,在同圆或等圆中,DABC1OC2C3归纳:归纳: 在同圆或等圆中,同弧或等弧所对的圆周在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半角相等,都等于这条弧所对的圆心角的一半定定 理理 半圆(或直径)所对的圆周半圆(或直径)所对的圆周角是直角角是直角; ; 90 90的圆周角所对的弦是直径的圆周角所对的弦是直径在同圆或等圆中,相等的圆周在同圆或等圆中,相等的圆周角所对的弧相等角所对的弧相等推推
9、 论论练习:练习:2.如图,圆心角如图,圆心角AOB=100,则,则ACB=_。OABCBAO.70 x1.求圆中角求圆中角X的度数的度数AO.X120AO.X120 C C D B在同圆或等圆中,如果两个圆周角相等,在同圆或等圆中,如果两个圆周角相等,它们所对弧一定相等吗?为什么?它们所对弧一定相等吗?为什么?在同圆或等圆中,如果两个在同圆或等圆中,如果两个圆周角圆周角相等,它们所对的相等,它们所对的弧弧一定相等一定相等 O F B A C E G 当球员在当球员在B,D,EB,D,E处射门时处射门时, ,他所处的位置对球门他所处的位置对球门ACAC分别形成三个张角分别形成三个张角ABC,
10、ABC, ADC,AEC.ADC,AEC.这三个角这三个角的大小有什么关系的大小有什么关系?.?.BACDEE EO OB BD DC CA A规律:都相等,都等于圆心角规律:都相等,都等于圆心角AOCAOC的一半的一半ACAC所对的圆周角所对的圆周角 AEC ABC AEC ABC ADC ADC的大小有什么关系?的大小有什么关系?结论:结论:同弧或等弧同弧或等弧所对的圆周角相等。所对的圆周角相等。ABCD在同圆或等圆中在同圆或等圆中相等的圆周角所对的弧相等相等的圆周角所对的弧相等. .则则 D=AABCD如图如图, 若若 AC = BD 问题问题1:如图,:如图,AB是是 O的直径,请问:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆周角 定理 应用 课件
限制150内