工程数学课程自学考试大纲.doc
《工程数学课程自学考试大纲.doc》由会员分享,可在线阅读,更多相关《工程数学课程自学考试大纲.doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高纲高纲 1771江苏省高等教育自学考试大纲江苏省高等教育自学考试大纲27054 工程数学考试说明工程数学考试说明南京理工大学编(2017 年)江苏省高等教育自学考试委员会办公室 课程性质与课程目标课程性质与课程目标一、课程性质和特点一、课程性质和特点工程数学课程是工科类各专业本科阶段的一门重要的理论基础课程,它包含概率论与数理统计和复变函数与积分变换两大部分内容。概率论与数理统计是研究随机现象的统计规律性的数学学科,是工科各专业(本科段)的一门重要的基础理论课程。概率论从数量上研究概率随机现象的统计规律性,它是本课程的理论基础。数理统计从应用角度研究处理随机性数据,建立有效的统计方法,进行统
2、计推断,通过本课程的学习,要使学生掌握概率论与数理统计的基本概念、基本理论和基本方法,并具备应用概率统计方法解决实际问题的能力。复变函数与积分变换是重要的基础理论课,它包含复变函数与积分变换两部分内容。复变函数是研究复自变量复值函数的分析课程,在某些方面,它是微积分学的推广,独立成为一门课程,这是因为它有其自身的研究对象和独特的处理方法,解析函数是复变函数研究的中心内容,留数计算及其应用以及保形映射是复变函数特有的问题。积分变换是通过把一类函数转变为另一类更为简单的且易于处理的函数。本课程介绍傅里叶变换和拉普拉斯变换,可以应用积分变换求解某些积分方程、微分方程、微分积分方程以及计算一些实积分。
3、通过本课程的学习,为以后学习工程力学、电工学、电磁学、振动力学及无线电技术等课程奠定必要的基础。 二、课程目标二、课程目标工程数学课程的目标:通过本课程的学习,使学生理解概率论与数理统计的基本概念,能用随机事件、随机变量及其分布等概念描述随机现象,明确各种分布与数字特征之间的关系,了解大数定律与中心极限定理的基本思想,掌握参数估计,假设检验等数据统计分析方法的原理及应用。学会有效地收集、整理和分析带有随机特性的数据,对实际问题作出推断或预测,并为采取一定的决策和行动提供依据和建议,具备分析和处理带有随机性数据的能力。使学生初步掌握复变函数的基本理论和方法,获得复变函数的基本运算技能,加深对微积
4、分中有关问题的理解,同时培养学生初步应用复变函数的方法分析和解决问题的能力,学会傅里叶变换和拉普拉斯变换这两个数学工具,并能在后续课程中运用这两个变换解决问题,为学习后继课程打下良好的基础。三、与相关课程的联系与区别三、与相关课程的联系与区别本课程与初等数学、高等数学课程有着密切的联系,如中学数学中的初等概率与统计初步,高数中的一元函数的导数与微分、定积分与广义积分、多元函数微分学、二重积分、曲线积分、含参数的广义积分、级数等,学习中要对初等数学、高等数学课程相关内容作必要的复习。本课程又是学习工程力学、电工学、电磁学、振动力学及无线电技术等课程的基础,因此学好本课程的基础知识,又为以后学习作
5、必要的准备。四、课程的重点和难点四、课程的重点和难点本课程的重点:本课程中的常用基本概念和基础知识;概率论与数理统计中,随机事件的概率及计算、条件概率、乘法公式、全概率公式、贝叶斯公式; 离散型随机变量的分布律及性质,随机变量的分布函数,连续型随机变量的概率密度及性质,常用分布(二项分布、泊松定理;泊松分布、均匀分布、指数分布;正态分布) ; 二维随机变量的联合分布函数、联合概率分布、联合概率密度、二维随机变量的边缘分布函数、边缘密度函数、边缘概率分布、随机变量的独立性; 随机变量数学期望、方差、协方差及相关系数;常用随机变量的数学期望与方差;总体、样本、统计量的概念、统计中常用的三种分布;矩
6、估计、极大似然估计、估计量的无偏性、有效性;正态总体参数的区间估计;显著性检验的基本思想、假设检验的步骤、正态总体均值与方差的检验。复数及其运算、复数的几何表示;复变函数的导数,解析函数的充要条件;解析函数与调和函数的关系;指数函数、对数函数、三角函数、幂函数;复变函数积分的概念、计算与性质;柯西-古萨基本定理、复合闭路定理、柯西积分公式、解析函数的高阶导数;复数项级数、幂级数、洛朗级数;留数计算、留数在定积分计算上的应用;映射的转动角,伸缩率;分式线性映射,幂函数构成的映射,指数函数构成的映射;拉普拉斯变换、性质及应用。本课程的难点:贝叶斯公式;随机变量函数的概率密度; 随机变量函数的分布;
7、二维随机变量的边缘分布; 两个随机变量和的分布;随机变量矩的概念;统计中常用的三种分布;抽样分布定理;正态总体参数的区间估计。复变函数的积分的计算;洛朗级数展开;留数在定积分计算上的应用;几种保角映射的综合应用;狄拉克函数及其傅氏变换;拉氏逆变换和拉氏变换的应用。 考核目标考核目标本大纲在考核目标中,按照识记、领会、简单应用和综合应用四个层次规定其应达到的能力层次要求。四个能力层次是递升的关系,后者必须建立在前者的基础上。各能力层次的含义是:识记(识记():要求考生能够识别和记忆本课程中规定的有关知识点的主要内容(如定义、定理、定律、表达式、公式、重要结论、方法等) ,并能够根据考核的不同要求
8、,做正确的表述、选择和判断。领会(领会():要求考生能够领悟和理解大纲中规定的有关知识点的内涵及外延,熟悉它们的内容要点以及它们之间的区别和联系,并能根据考核的不同要求,做出正确的判断、解释。简单应用(简单应用():要求考生能够运用本课程规定的少数知识点解决简单的计算、分析论证和简单的应用问题。综合应用(综合应用():要求考生能够运用本课程规定的多个知识点解决较复杂的计算、分析论证和应用问题。 课程内容与考核要求课程内容与考核要求第一部分第一部分 概率论与数理统计概率论与数理统计教学主要参考教材:概率论与数理统计(二) 孙洪祥、柳金甫主编,辽宁大学出版社,2006 年版。第一章第一章 随机事件
9、与概率随机事件与概率一、学习目的与要求一、学习目的与要求通过本章学习,要求考生理解随机事件、概率、条件概率及事件的独立性的概念,掌握随机事件关系与运算,会计算简单的古典概型问题,掌握乘法公式、 全概率公式、 贝叶斯公式及应用。二、课程内容二、课程内容1.1 随机事件1.2 概率 1.3 条件概率1.4 事件的独立性三、考核知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点: :1.随机事件关系与运算2.概率的定义和性质3.古典概型4.条件概率、乘法公式、 全概率公式、 贝叶斯公式 5.事件的独立性考核要求考核要求: :领会:概率的定义和性质;古典概型。简单应用:随机事件关系与运算;条
10、件概率;事件的独立性。1.理解和事件、积事件、互不相容事件、对立事件的意义和运算律。2.会用概率性质计算有关概率问题。3.会用计算较简单的古典概型问题。4.会计算条件概率问题。5.会用乘法公式、 全概率公式、 贝叶斯公式计算概率问题。6.理解事件的独立性,会用事件的独立性计算概率问题。四、本章重点、难点四、本章重点、难点重点:随机事件关系与运算,概率性质,古典概型问题,乘法公式、 全概率公式、事件的独立性。难点:古典概型问题的计算、贝叶斯公式。第二章 随机变量及其概率分布一、学习目的与要求一、学习目的与要求通过本章学习,考生应当理解随机变量及其分布函数、离散型随机变量及其分布律、连续型随机变量
11、及其概率密度的概念及性质;了解随机变量函数的概念,掌握离散型随机变量分布律与分布函数及相关事件的概率的计算、连续型随机变量的概率密度与分布函数及相关事件的概率的计算;掌握常用随机变量的分布及相关的概率计算:0-1 分布、二项分布、泊松分布、均匀分布、指数分布、正态分布;会求简单的随机变量函数的分布。二、课程内容二、课程内容2.1 离散型随机变量2.2 随机变量的分布函数2.3 连续型随机变量及其概率密度三、考核知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点1.随机变量的概念2.分布函数的概念与性质3.离散型随机变量及其分布4.连续型随机变量及其概率密度5.随机变量函数的分布考核要
12、求考核要求识记:随机变量的概念及分类。领会:随机变量的分布函数;随机变量函数的分布。简单应用:离散型随机变量及其分布律。综合应用:连续型随机变量及其概率密度。四、本章重点、难点四、本章重点、难点重点:离散型随机变量及其分布律;连续型随机变量及其概率密度;二项分布,正态分布;难点:分布函数的概念;连续型随机变量的概率密度及计算; 随机变量函数的分布。第三章 多维随机变量及其概率分布一、学习目的与要求一、学习目的与要求通过本章学习,考生应当理解二维随机变量及其分布函数、二维离散型随机变量的联合分布律、二维连续型随机变量及其联合概率密度的概念及性质;理解二维随机变量的边缘分布函数、边缘密度函数、边缘
13、分布律的概念;掌握边缘分布函数、边缘密度函数、边缘分布律的计算;了解随机变量的独立性的概念;了解两个独立随机变量和的分布。二、课程内容二、课程内容3.1 多维随机变量的概念 3.2 随机变量的独立性3.3 两个随机变量的函数的分布三、考核知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点1.多维随机变量的概念2.二维离散型随机变量的联合分布律及边缘分布律3.二维连续型随机变量联合概率密度及边缘概率密度4.随机变量的独立性5.两个独立随机变量和的分布考核要求考核要求识记:两个独立随机变量和的分布。领会:多维随机变量及其分布;随机变量的独立性;理解二维随机变量的分布函数及性质;理解二维离
14、散型随机变量的联合分布律及性质;理解二维连续型随机变量概率密度的概念及性质;了解二维均匀分布、二维正态分布的概念;会判断二个离散型随机变量的独立性;会判断二个连续型随机变量的独立性。简单应用:边缘分布:(1)会求随机变量的边缘分布函数;(2)会求二维离散型随机变量的边缘分布律;(3)会求二维连续型随机变量的边缘概率密度;(4)了解二维正态分布的边缘分布。四、本章重点、难点四、本章重点、难点重点:二维离散型随机变量的联合分布律及边缘分布律;二维连续型随机变量联合概率密度及边缘概率密度。难点:边缘概率密度的计算,两个独立随机变量和的分布。第四章 随机变量的数字特征一、学习目的与要求一、学习目的与要
15、求通过本章学习,考生应当理解数学期望和方差的概念,掌握数学期望和方差的性质及计算;掌握常用分布:0-1 分布、二项分布、泊松分布、均匀分布、指数分布、正态分布的数学期望和方差,了解协方差与相关系数的概念、性质及计算;了解几种矩的概念与计算。二、课程内容二、课程内容4.1 随机变量数学期望4.2 方差 4.3 协方差与相关系数三、考核知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点1.数学期望的概念及性质2.方差的概念及性质3.几种常用分布的数学期望与方差4.协方差与相关系数考核要求考核要求识记:二维正态分布的相关系数的性质,几种矩的概念 领会:协方差与相关系数简单应用:方差;几种常
16、用分布的数学期望与方差综合应用:数学期望四、本章重点、难点四、本章重点、难点重点:数学期望和方差的概念、性质及计算,协方差与相关系数难点:随机变量函数的数学期望第五章 大数定律及中心极限定理一、学习目的与要求一、学习目的与要求本章是概率论与数理统计的理论基础。通过本章学习,考生应当了解切比雪夫不等式、大数定律 、中心极限定理的意思,为数理统计学习做理论准备。二、课程内容二、课程内容5.1 切比雪夫不等式5.2 大数定律 5.2 中心极限定理三、考核知识点与考核要求三、考核知识点与考核要求本章不做考试要求四、本章重点、难点四、本章重点、难点重点:独立同分布的中心极限定理难点:中心极限定理的简单应
17、用第六章 统计量及其抽样分布一、学习目的与要求一、学习目的与要求通过本章学习,考生应当了解总体与样本的概念;了解总体分布与样本分布的概念;理解统计量的概念;掌握样本均值、样本方差及性质,了解样本矩概念;了解三种分布分布、 分布、分布的定义及性质,了解它们的上分位数的概念;掌握正态总体的抽2tF样分布。二、课程内容二、课程内容6.1 引言 6.2 总体与样本6.3 统计量及其分布 三、考核知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点1总体、简单随机样本2统计量3分布、 分布、分布2tF4正态总体的抽样分布考核要求考核要求识记:总体与样本。领会:统计量;几种常用统计量的性质及分布;
18、分布、 分布、分布的定义及其2tF上分位数的概念。简单应用:正态总体的抽样分布。四、本章重点、难点四、本章重点、难点重点:简单随机样本,统计量,正态总体的抽样分布。难点:正态总体的抽样分布。第七章 参数估计一、学习目的与要求一、学习目的与要求通过本章学习,考生应当了解参数的点估计、估计量与估计值的概念;掌握矩估计、极大似然估计的方法;理解估计量的无偏性的概念,了解有效性、相合性的意义,会求单个正态总体均值和方差的置信区间。二、课程内容二、课程内容7.1 点估计的几种方法7.2 点估计的评价标准 7.3 参数的区间估计三、考核知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点1点估计2
19、矩估计法3极大似然估计法4点估计的评价标准5单个正态总体均值和方差的置信区间考核要求考核要求领会:点估计的评价标准。简单应用:矩估计法、极大似然估计法、单个正态总体均值和方差的置信区间。四、本章重点、难点四、本章重点、难点重点:矩估计法、极大似然估计法、单个正态总体均值和方差的区间估计。难点:极大似然估计法。第八章 假设检验一、学习目的与要求一、学习目的与要求通过本章学习,考生应当了解假设检验的基本思想和概念,掌握假设检验的基本步骤;掌握单个正态总体均值和方差的假设检验。二、课程内容二、课程内容8.1 假设检验的基本思想和概念8. 2 总体均值的假设检验8. 2 正态总体方差的假设检验三、考核
20、知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点1假设检验的基本思想和基本步骤2单个正态总体均值和方差的假设检验(双侧检验)考核要求考核要求识记:假设检验的基本思想和基本步骤。简单应用:正态总体均值和方差的假设检验(双侧检验) 。四、本章重点、难点四、本章重点、难点重点与难点:单个正态总体均值和方差的假设检验。第二部分第二部分 复变函数与积分变换复变函数与积分变换教学主要参考教材:复变函数与积分变换刘吉佑主编,高等教育出版社,2015 年版。第一章 复数一、学习目的与要求一、学习目的与要求通过本章学习,考生应当深刻理解复数的概念;熟悉复数的多种表示法,复数的四则运算及乘方和开方运算
21、,理解复数的几何意义;理解简单曲线和区域等概念;会用复变量的方程表示常见曲线、不等式表示区域。二、课程内容二、课程内容1.1 复数及其表示法1.2 复数的运算 1.3 复平面上的曲线和区域1.4 扩充复平面三、考核知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点1.复数的概念及其表示法2.复数的运算及复数的几何意义3.简单曲线和区域4.扩充复平面考核要求考核要求识记:扩充复平面。领会:复数及其表示法;简单曲线和区域。简单应用:复数的运算及复数的几何意义四、本章重点、难点四、本章重点、难点重点:复数的运算及复数的几何意义;用复变量的方程表示常见曲线、不等式表示区域。难点:复数的开方运
22、算,用复变量的方程表示常见曲线、不等式表示区域。第二章 解析函数一、学习目的与要求一、学习目的与要求通过本章学习,考生应当理解复变函数的概念,理解复变函数的导数、解析函数的概念及柯西-黎曼条件,掌握可导、解析的充要条件,会判断复变函数的解析性;掌握几种复变基本初等函数的概念、计算及性质。二、课程内容二、课程内容2.1 复变函数2.2 解析函数2.3 柯西黎曼条件2.4 初等函数 三、考核知识点与考核要求三、考核知识点与考核要求考核知识点考核知识点1.复变函数的概念、极限和连续性2.复变函数的导数3.解析函数的概念4.柯西黎曼条件5.初等函数考核要求考核要求识记:复变函数的极限和连续性。领会:复
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 工程 数学课程 自学考试 大纲
限制150内