第四节 函数单调性的判定法.ppt
《第四节 函数单调性的判定法.ppt》由会员分享,可在线阅读,更多相关《第四节 函数单调性的判定法.ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一、单调性的判别法一、单调性的判别法xyo)(xfy xyo)(xfy abAB0)( xf0)( xf定理定理.,)(0)(),()2(,)(0)(),(1.),(,)(上单调减少上单调减少在在那末函数那末函数,内内如果在如果在上单调增加;上单调增加;在在,那末函数,那末函数内内如果在如果在)(导导内可内可上连续,在上连续,在在在设函数设函数baxfyxfbabaxfyxfbababaxfy abBA证证),(,21baxx ,21xx 且且应用拉氏定理应用拉氏定理,得得)()()()(211212xxxxfxfxf , 012 xx, 0)(),( xfba内,内,若在若在, 0)( f则
2、则).()(12xfxf .,)(上单调增加上单调增加在在baxfy , 0)(),( xfba内,内,若在若在, 0)( f则则).()(12xfxf .,)(上单调减少上单调减少在在baxfy . 0)(),( , ,)( )2( . 0)(),( , ,)( 1.),(,)( xfbabaxfxfbabaxfbabaxfy内内在在则则上单调不增上单调不增在在如果如果内内则在则在上单调不减上单调不减在在如果如果)(导导内可内可上连续,在上连续,在在在设函数设函数定理定理证证:xxxx 00 , ,且且),()( , )( 0 xfxfxf 则则是单调不减的是单调不减的若若0)()(lim)
3、(000 xxxfxfxfxx),()( , )( 0 xfxfxf 则则是单调不增的是单调不增的若若0)()(lim)(000 xxxfxfxfxx例例1 1解解.1的单调性的单调性讨论函数讨论函数 xeyx. 1 xey,)0 ,(内内在在 , 0 y函数单调减少;函数单调减少;,), 0(内内在在, 0 y.函函数数单单调调增增加加注意注意: :函数的单调性是一个区间上的性质,要用函数的单调性是一个区间上的性质,要用导数在这一区间上的符号来判定,而不能用一导数在这一区间上的符号来判定,而不能用一点处的导数符号来判别一个区间上的单调性点处的导数符号来判别一个区间上的单调性).,(: D又又
4、二、单调区间求法二、单调区间求法问题问题: :如上例,函数在定义区间上不是单调的,如上例,函数在定义区间上不是单调的,但在各个部分区间上单调但在各个部分区间上单调定义定义: :若函数在其定义域的某个区间内是单调若函数在其定义域的某个区间内是单调的,则该区间称为函数的的,则该区间称为函数的单调区间单调区间.导数等于零的点和不可导点,可能是单调区间导数等于零的点和不可导点,可能是单调区间的分界点的分界点方法方法: :.,)()(0)(数的符号数的符号然后判断区间内导然后判断区间内导的定义区间的定义区间来划分函数来划分函数不存在的点不存在的点的根及的根及用方程用方程xfxfxf 例例2 2解解.31
5、292)(23的单调区间的单调区间确定函数确定函数 xxxxf).,(:D12186)(2 xxxf)2)(1(6 xx得,得,解方程解方程0)( xf. 2, 121 xx时,时,当当1 x, 0)( xf上单调增加;上单调增加;在在1 ,(时,时,当当21 x, 0)( xf上单调减少;上单调减少;在在2 , 1 时,时,当当 x2, 0)( xf上单调增加;上单调增加;在在), 2单调区间为单调区间为,1 ,(,2 , 1)., 2例例3 3解解.)(32的单调区间的单调区间确定函数确定函数xxf ).,(:D)0(,32)(3 xxxf.,0导数不存在导数不存在时时当当 x时,时,当当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四节 函数单调性的判定法 第四 函数 调性 判定
限制150内