解微分方程欧拉法-R-K法及其MATLAB实例.docx
《解微分方程欧拉法-R-K法及其MATLAB实例.docx》由会员分享,可在线阅读,更多相关《解微分方程欧拉法-R-K法及其MATLAB实例.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上解微分方程的欧拉法,龙格-库塔法及其MATLAB简单实例欧拉方法(Euler method)用以对给定初值的常微分方程(即初值问题)求解分为前进EULER法、后退EULER法、改进的EULER法。缺点:欧拉法简单地取切线的端点作为下一步的起点进行计算,当步数增多时,误差会因积累而越来越大。因此欧拉格式一般不用于实际计算。改进欧拉格式:为提高精度,需要在欧拉格式的基础上进行改进。采用区间两端的斜率的平均值作为直线方程的斜率。改进欧拉法的精度为二阶。算法为:微分方程的本质特征是方程中含有导数项,数值解法的第一步就是设法消除其导数值。对于常微分方程:xa,by(a) = y
2、0可以将区间a,b分成n段,那么方程在第xi点有y(xi) = f(xi,y(xi),再用向前差商近似代替导数则为:在这里,h是步长,即相邻两个结点间的距离。因此可以根据xi点和yi点的数值计算出yi+1来:i=0,1,2,L这就是向前欧拉格式。改进的欧拉公式:将向前欧拉公式中的导数f(xi,yi)改为微元两端导数的平均,即上式便是梯形的欧拉公式。可见,上式是隐式格式,需要迭代求解。为了便于求解,使用改进的欧拉公式:数值分析中,龙格库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。实际上,龙格-库塔法是欧拉方法的一种推广,向前欧拉公式将导数项简单取为f(xn
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微分方程 欧拉法 及其 MATLAB 实例
限制150内