大数据和小数据的应用区别.docx
《大数据和小数据的应用区别.docx》由会员分享,可在线阅读,更多相关《大数据和小数据的应用区别.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上大数据和小数据的应用区别 大数据时代一书的核心观点是说:“在大数据时代,我们正经历着一场生活、工作与思维的大变革。大数据技术的出现带给人们的思维方式、行为方式、媒体传播方式及社会治理方式等都诸多方面带来了革命性的变革。 我们没必要非得知道现象背后的原因,而是要让数据自己发声。”在大数据时代,相关关系能够帮助我们更好地了解这个世界,建立在相关关系分析法上面的预测是大数据的核心,通过找到“关联物”并监控它,我们就能够预测未来。 作者还提出了“大数据三原则”:要全体不要抽样,要效率不要精确,要相关不要因果。虽说该书作者提出的“要相关不要因果”的观点还值得商榷,但“相关性”观
2、点还是从某个层面上说出了大数据时代的核心特征。大数据是往往是商业自动化产生的数据,又具有实时在线的特征。 与大数据概念相对应的,在这之前的数据似乎就是所谓小数据,如果有所谓的小数据概念的话,应该特指采用调查方法获得的抽样数据,或者是结构化的海量数据。对于小数据的分析通常采用的是传统的统计分析方法,是一种自上而下的实证研究方法论。小数据往往依托数理统计的大数定律,描述了抽样理论下样本最终服从中心极限定理的正态分布理论,强调描述性统计学和推断统计学。大数据重预测,小数据重解释 大数据的开放性、公开性和易获得性,社交网络每天产生的大数据可以在一定规则开放性下,通过应用程序接口(API)和爬虫技术采集
3、,一些商业机构和政府组织也向社会研究机构提供各种海量数据源,特别是政府开始提供权威开放数据源。大数据往往带有时间标签,更具预测性。国内外众多机构开始采集海量Twitter和微博上的传播信息和个人属性特征和标签,期望预测社会舆情和社会情感、预测电影票房、预测商业机会,进而期望预测人们的态度和行为。开放、公开易获得数据源是大数据时代的基本特征和产生社会影响本质。大数据重发现,而小数据重实证 传统的小数据重实证研究,强调在理论的前提下建立假设,收集数据,证伪理论的适用性,采用随机抽样的定量调查问卷获取数据,验证假设。这是一种自上而下的决策和思维过程。而大数据重发现知识,预知未来,为探索未知的社会现象
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 应用 区别
限制150内