对拉格朗日插值法与牛顿插值法的学习和比较.doc
《对拉格朗日插值法与牛顿插值法的学习和比较.doc》由会员分享,可在线阅读,更多相关《对拉格朗日插值法与牛顿插值法的学习和比较.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上对拉格朗日插值法与牛顿插值法的学习和比较摘要:根据对拉格朗日插值法和牛顿插值法的理解,本文主要介绍了拉格朗日插值法和牛顿插值法的相关内容以及它们的区别。关键词:拉格朗日插值法;牛顿插值法The leaning and comparison of the Lagrange interpolation and Newton interpolation Abstract: Based on the understanding of the Lagrange interpolation and Newton interpolation,this paper mainly de
2、scribes some related knowledge as well as the difference between these two methods.Keywords: Lagrange interpolation ; Newton interpolation前言在工程和科学研究中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数在区间上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值(即一张函数表)。显然,要利用这张函数表来分析函数的性态,甚至直接求出其他一些点上的函数值可能是非常困难的。面对这些情况,总
3、希望根据所得函数表(或结构复杂的解析表达式),构造某个简单函数作为的近似。这样就有了插值法,插值法是解决此类问题目前常用的方法。如设函数在区间上连续,且在个不同的点上分别取值。插值的目的就是要在一个性质优良、便于计算的函数类中,求一简单函数,使而在其他点上,作为的近似。通常,称区间为插值区间,称点为插值节点,称式为插值条件,称函数类为插值函数类,称为函数在节点处的插值函数。求插值函数的方法称为插值法。插值函数类的取法不同,所求得的插值函数逼近的效果就不同。它的选择取决于使用上的需要,常用的有代数多项式、三角多项式和有理函数等。当选用代数多项式作为插值函数时,相应的插值问题就称为多项式插值。本文
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 拉格朗日插值法 牛顿 插值法 学习 比较
限制150内