2014年高考数学理科(高考真题+模拟新题)分类汇编:G单元++立体几何(共77页).doc
《2014年高考数学理科(高考真题+模拟新题)分类汇编:G单元++立体几何(共77页).doc》由会员分享,可在线阅读,更多相关《2014年高考数学理科(高考真题+模拟新题)分类汇编:G单元++立体几何(共77页).doc(79页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 数 学G单元 立体几何 G1 空间几何体的结构 20、2014安徽卷 如图15,四棱柱ABCD A1B1C1D1中,A1A底面ABCD,四边形ABCD为梯形,ADBC,且AD2BC.过A1,C,D三点的平面记为,BB1与的交点为Q.图15(1)证明:Q为BB1的中点;(2)求此四棱柱被平面所分成上下两部分的体积之比;(3)若AA14,CD2,梯形ABCD的面积为6,求平面与底面ABCD所成二面角的大小20解: (1)证明:因为BQAA1,BCAD,BCBQB,ADAA1A,所以平面QBC平面A1AD,从而平面A1CD与这两个平面的交线相互平行,即QCA1D.故QBC
2、与A1AD的对应边相互平行,于是QBCA1AD,所以,即Q为BB1的中点(2)如图1所示,连接QA,QD.设AA1h,梯形ABCD 的高为d,四棱柱被平面所分成上下两部分的体积分别为V上和V下,BCa,则AD2a.图1V三棱锥Q A1AD2ahdahd,V四棱锥Q ABCDdahd,所以V下V三棱锥Q A1ADV四棱锥Q ABCDahd.又V四棱柱A1B1C1D1 ABCDahd,所以V上V四棱柱A1B1C1D1 ABCDV下ahdahdahd,故.(3)方法一:如图1所示,在ADC中,作AEDC,垂足为E,连接A1E.又DEAA1,且AA1AEA,所以DE平面AEA1,所以DEA1E.所以A
3、EA1为平面与底面ABCD所成二面角的平面角因为BCAD,AD2BC,所以SADC2SBCA.又因为梯形ABCD的面积为6,DC2,所以SADC4,AE4.于是tanAEA11,AEA1.故平面与底面ABCD所成二面角的大小为.方法二:如图2所示,以D为原点,DA,分别为x轴和z轴正方向建立空间直角坐标系设CDA,BCa,则AD2a.因为S四边形ABCD2sin 6,所以a.图2从而可得C(2cos ,2sin ,0),A1,所以DC(2cos ,2sin ,0),.设平面A1DC的法向量n(x,y,1),由得所以n(sin ,cos ,1)又因为平面ABCD的法向量m(0,0,1),所以co
4、sn,m,故平面与底面ABCD所成二面角的大小为.82014湖北卷 算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也又以高乘之,三十六成一”该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式VL2h.它实际上是将圆锥体积公式中的圆周率近似取为3.那么,近似公式VL2h相当于将圆锥体积公式中的近似取为()A. B. C. D.8B解析 设圆锥的底面圆半径为r,底面积为S,则L2r,由题意得L2hSh,代入Sr2化简得3;类比推理,若VL2h,则.故选B.7、2014辽宁卷 某几何体三视图如图11所
5、示,则该几何体的体积为()A82 B8 C8 D8图117B解析 根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分后余下的部分,故该几何体体积为222228.G2 空间几何体的三视图和直观图72014安徽卷 一个多面体的三视图如图12所示,则该多面体的表面积为()A21 B8C21 D18图127A解析 如图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其表面积S646221.22014福建卷 某空间几何体的正视图是三角形,则该几何体不可能是()A圆柱 B圆锥 C四面体 D三棱柱2A解析 由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角
6、形52014湖北卷 在如图11所示的空间直角坐标系O xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2)给出编号为,的四个图,则该四面体的正视图和俯视图分别为()图11 A和 B和 C和 D和5D解析 由三视图及空间直角坐标系可知,该几何体的正视图显然是一个直角三角形且内有一条虚线(一锐角顶点与其所对直角边中点的连线),故正视图是;俯视图是一个钝角三角形,故俯视图是. 故选D.7、2014湖南卷 一块石材表示的几何体的三视图如图12所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()图12A1 B2 C3 D47B解析 由三视图可知
7、,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球由题意可知正视图三角形的内切圆的半径即为球的半径,可得r2.52014江西卷 一几何体的直观图如图11所示,下列给出的四个俯视图中正确的是()图11ABC D图125B解析 易知该几何体的俯视图为选项B中的图形7、2014辽宁卷 某几何体三视图如图11所示,则该几何体的体积为()A82 B8 C8 D8图117B解析 根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分后余下的部分,故该几何体体积为222228.32014浙江卷 几何体的三视图(单位:cm)如图11所示,则此几何体的表面积是()图11A9
8、0 cm2 B129 cm2 C132 cm2 D138 cm23D解析 此几何体是由长方体与三棱柱组合而成的,其直观图如图,所以该几何体的表面积为2(436364)234433533138(cm2),故选D.122014新课标全国卷 如图13,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()图13A6 B6 C4 D412B解析 该几何体是如图所示的棱长为4的正方体内的三棱锥ECC1D1(其中E为BB1的中点),其中最长的棱为D1E6.62014新课标全国卷 如图11,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的
9、三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()图11A. B. C. D.6C解析 该零件是一个由两个圆柱组成的组合体,其体积为32222434(cm3),原毛坯的体积为32654(cm3),切削掉部分的体积为543420(cm3),故所求的比值为.172014陕西卷 四面体ABCD及其三视图如图14所示,过棱AB的中点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H.(1)证明:四边形EFGH是矩形;(2)求直线AB与平面EFGH夹角的正弦值图1417解:(1)证明:由该四面体的三视图可知,BDD
10、C,BDAD,ADDC,BDDC2,AD1.由题设,BC平面EFGH,平面EFGH平面BDCFG,平面EFGH平面ABCEH,BCFG,BCEH,FGEH.同理EFAD,HGAD,EFHG.四边形EFGH是平行四边形又ADDC,ADBD,AD平面BDC,ADBC,EFFG,四边形EFGH是矩形(2)方法一:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),DA(0,0,1),BC(2,2,0),BA(2,0,1)设平面EFGH的法向量n(x,y,z),EFAD,FGBC,nDA0,nBC0,得取n(1,1,0),sin |cos,
11、n|.方法二:如图,以D为坐标原点建立空间直角坐标系,则D(0,0,0),A(0,0,1),B(2,0,0),C(0,2,0),E是AB的中点,F,G分别为BD,DC的中点,得E,F(1,0,0),G(0,1,0),FG(1,1,0),BA(2,0,1)设平面EFGH的法向量n(x,y,z),则nFE0,nFG0,得取n(1,1,0),sin |cos,n|.102014天津卷 一个儿何体的三视图如图13所示(单位:m),则该几何体的体积为_m3.图1310.解析 由三视图可得,该几何体为圆柱与圆锥的组合体,其体积V124222.72014重庆卷 某几何体的三视图如图12所示,则该几何体的表面
12、积为()图12A54 B60 C66 D727B解析 由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为S34453560.G3 平面的基本性质、空间两条直线42014辽宁卷 已知m,n表示两条不同直线,表示平面下列说法正确的是()A若m,n,则mn B若m,n,则mnC若m,mn,则n D若m,mn,则n4B解析 B解析 由题可知,若m,n,则m与n平行、相交或异面,所以A错误;若m,n,则mn,故B正确;若m,mn,则n或n,故C错误若m,mn,
13、则n或n或n与a相交,故D错误17、2014福建卷 在平面四边形ABCD中,ABBDCD1,ABBD,CDBD.将ABD沿BD折起,使得平面ABD平面BCD,如图15所示(1)求证:ABCD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值图1517解:(1)证明:平面ABD平面BCD,平面ABD平面BCDBD,AB平面ABD,ABBD,AB平面BCD.又CD平面BCD,ABCD.(2)过点B在平面BCD内作BEBD.由(1)知AB平面BCD,BE平面BCD,BD平面BCD,ABBE,ABBD.以B为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系(如图所示)依题
14、意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M.则(1,1,0),(0,1,1)设平面MBC的法向量n(x0,y0,z0),则即取z01,得平面MBC的一个法向量n(1,1,1)设直线AD与平面MBC所成角为,则sin .即直线AD与平面MBC所成角的正弦值为.112014新课标全国卷 直三棱柱ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为()A. B. C. D.11C解析 如图,E为BC的中点由于M,N分别是A1B1,A1C1的中点,故MNB1C1且MNB1C1,故MN綊BE,所以四边形
15、MNEB为平行四边形,所以EN綊BM,所以直线AN,NE所成的角即为直线BM,AN所成的角设BC1,则B1MB1A1,所以MBNE,ANAE,在ANE中,根据余弦定理得cos ANE.18,2014四川卷 三棱锥A BCD及其侧视图、俯视图如图14所示设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MNNP.(1)证明:P是线段BC的中点;(2)求二面角A NP M的余弦值图1418解:(1)如图所示,取BD的中点O,连接AO,CO.由侧视图及俯视图知,ABD,BCD为正三角形,所以AOBD,OCBD.因为AO,OC平面AOC,且AOOCO,所以BD平面AOC.又因为AC平面AOC,
16、所以BDAC.取BO的中点H,连接NH,PH.又M,N,H分别为线段AD,AB,BO的中点,所以MNBD,NHAO,因为AOBD,所以NHBD.因为MNNP,所以NPBD.因为NH,NP平面NHP,且NHNPN,所以BD平面NHP.又因为HP平面NHP,所以BDHP.又OCBD,HP平面BCD,OC平面BCD,所以HPOC.因为H为BO的中点,所以P为BC的中点(2)方法一:如图所示,作NQAC于Q,连接MQ.由(1)知,NPAC,所以NQNP.因为MNNP,所以MNQ为二面角A NP M的一个平面角由(1)知,ABD,BCD为边长为2的正三角形,所以AOOC.由俯视图可知,AO平面BCD.因
17、为OC平面BCD,所以AOOC,因此在等腰直角AOC中,AC.作BRAC于R因为在ABC中,ABBC,所以R为AC的中点,所以BR.因为在平面ABC内,NQAC,BRAC,所以NQBR.又因为N为AB的中点,所以Q为AR的中点,所以NQ.同理,可得MQ.故MNQ为等腰三角形,所以在等腰MNQ中,cosMNQ.故二面角A NP M的余弦值是.方法二:由俯视图及(1)可知,AO平面BCD.因为OC,OB平面BCD,所以AOOC,AOOB.又OCOB,所以直线OA,OB,OC两两垂直如图所示,以O为坐标原点,以OB,OC,OA的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系O xyz.则A(0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 年高 数学 理科 高考 模拟 分类 汇编 单元 立体几何 77
限制150内