midas-斜拉桥正装分析操作例题(共75页).doc
《midas-斜拉桥正装分析操作例题(共75页).doc》由会员分享,可在线阅读,更多相关《midas-斜拉桥正装分析操作例题(共75页).doc(75页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上斜拉桥成桥阶段和正装施工阶段分析目 录专心-专注-专业概要斜拉桥是塔、拉索和加劲梁三种基本结构组成的缆索承重结构体系,桥形美观,且根据所选的索塔形式以及拉索的布置能够形成多种多样的结构形式,容易与周边环境融合,是符合环境设计理念的桥梁形式之一。为了决定安装拉索时的控制张拉力,首先要决定在成桥阶段恒载作用下的初始平衡状态,然后再按施工顺序进行施工阶段分析。一般进行斜拉桥分析时首先通过倒拆分析计算初张拉力,然后进行正装施工阶段分析。在本例题将介绍建立斜拉桥模型的方法、计算拉索初拉力的方法、施工阶段分析方法、采用未闭合配合力功能只利用成桥阶段分析张力进行正装分析的方法。本例
2、题中的桥梁模型为三跨连续斜拉桥(如图1),主跨110m、边跨跨经为40m。图 1. 斜拉桥分析模型桥梁基本数据为了说明斜拉桥分析步骤,本例题采用了较简单的分析模型,可能与实际桥梁设计内容有所差异。本例题桥梁的基本数据如下。桥梁形式 三跨连续斜拉桥桥梁跨经 40.0 m + 110.0 m + 40.0 m = 190.0 m桥梁高度主塔下部 : 20m,主塔上部 : 40m索主塔主梁主梁主塔索40m110m40m图 2. 立面图荷载分 类荷载类型荷载值 使用MIDAS/Civil 软件内含的优化法则计算出索初拉力。自重自重程序内部自动计算索初拉力初拉力荷载满足成桥阶段初始平衡状态的索初拉力挂篮
3、荷载节点荷载80 tonf支座强制位移强制位移10 cm 设定建模环境为了做斜拉桥成桥阶段分析首先打开新项目“cable stayed”为名保存文件,开始建立模型。 单位体系设置为“m”和“tonf”。该单位体系可以根据输入的数据类型随时随意更换。文件 / 新项目文件 / 保存 (cable stayed)工具 / 单位体系长度 m ;力 tonf 图 3. 设定建模环境及单位体系定义材料和截面特性值输入加劲梁、主塔下部、主塔上部、拉索的材料特性值。 在材料和截面对话框中选择材料表单点击按钮。模型 / 材料和截面特性 / 材料名称 (加劲梁)设计类型 用户定义 定义多种材料时,使用按钮会更方便
4、一些。弹性模量 (2.1e7) ; 泊松比 (0.3)容重 (7.85)按上述方法参照表1输入主塔下部、主塔上部、拉索的材料特性值。表 1. 材料特性值号项目弹性模量(tonf/m2)泊松比容重(tonf/m3)1加劲梁2.11070.37.852主塔下部2.51060.172.53主塔上部2.11070.37.854拉索1.571070.37.85图 4. 定义材料特性值输入加劲梁、主塔下部、主塔上部、拉索的截面特性值。在材料和截面特性对话框的截面表单选择按钮。模型 / 材料和截面特性 / 截面数值表单截面号 (1) ; 名称 (加劲梁) 截面形状实腹长方形截面截面特性值面积 (0.8) 按
5、上述方法参照表2输入加劲梁、主塔下部、主塔上部、拉索的截面特性值。表 2. 截面特性值号项目截面形状面积(m2)Ixx(m4)Iyy(m4)Izz(m4)1加劲梁实腹长方形0.815.01.015.02主塔下部实腹长方形50.01000.0500.0500.03主塔上部实腹长方形0.35.05.05.04拉索实腹圆形0.0050.00.00.0图 5. 定义截面特性值对话框成桥阶段分析建立好成桥阶段模型后计算自重和二期荷载引起的索初拉力。然后利用拉索初拉力进行成桥阶段初始平衡状态分析。首先建立斜拉桥的成桥阶段二维模型,利用包含索力优化功能的未知荷载系数功能计算拉索初拉力。斜拉桥成桥阶段模型参见
6、图6。 图 6. 斜拉桥成桥阶段模型建立模型首先建立成桥阶段分析模型,待成桥阶段分析结束后另存为其它名称做施工阶段分析。建立斜拉桥成桥阶段模型的详细步骤如下。1. 建立加劲梁模型2. 建立主塔模型3. 建立拉索模型4. 生成主塔上的支座5. 输入边界条件6. 拉索初拉力计算:利用未知荷载系数功能7. 输入荷载工况以及荷载8. 运行结构分析9. 计算位置荷载系数建立加劲梁模型首先用 建立节点 功能建立节点后使用 扩展单元 功能生成910+25+910m的梁单元模型。 正面, 捕捉节点 (开), 捕捉点栅格 (开) 自动对齐 (开), 节点号 (开)模型 / 节点 / 建立节点 坐标 ( -95,
7、 0, 0 ) 模型 / 单元 / 扩展单元 全选扩展类型节点线单元 单元属性单元类型梁单元材料1 : 加劲梁 ; 截面1 : 加劲梁 生成类型复制和移动 复制和移动任意间距 ; 方向x间距910, 25, 910 图 7. 建立加劲梁单元建立主塔在主塔下部利用 建立节点 功能建立节点后,利用 扩展功能 建立10m5m的主塔下部梁单元。 模型 / 节点 / 建立节点 坐标 (-55 , 0, -20 ) 复制复制次数 (1) ; 距离 (110, 0, 0) 模型 / 单元 / 扩展单元 窗口选择 (节点 : 图8的;节点22,23)生成类型节点线单元 单元属性单元类型梁单元材料2 : 主塔下
8、部 ; 截面2 : 主塔下部 生成类型复制和移动 复制和移动任意间距 ; 方向z间距10, 5 选择节点22, 23 图 8. 建立主塔下部选择节点后利用 扩展功能 建立加劲梁上部梁单元(10m+5m+310m)。 模型 / 单元 / 扩展单元 窗口选择 (节点 : 图9的;节点26,27)扩展类型节点线单元 单元属性单元类型梁单元材料3 : 主塔上部 ; 截面3 : 主塔上部 生成类型复制和移动 复制和移动任意间距 ; 方向z间距15, 310 选择节点26, 27 图 9. 建立主塔上部建立拉索利用 建立单元 功能建立拉索单元。 显示单元 单元坐标轴(开) 模型 / 单元 / 建立单元 单
9、元类型桁架单元材料4: 拉索 ; 截面4: 拉索; Beta角 ( 0 )节点连接 ( 34, 1 )8 节点连接 ( 34, 3 )8 节点连接 ( 34, 7 )8 节点连接 ( 34, 9 )8 节点连接 ( 35, 13 )8 节点连接 ( 35, 15 )8 节点连接 ( 35, 19 )8 节点连接 ( 35, 21 )8 图 10. 建立拉索建立主塔支座 弹性连接单元是把两个节点按用户所需要的刚度连接而形成的有限计算单元。弹性连接单元由3个轴向刚度值和3个旋转刚度组成,6个自由度按弹性连接单元的单元坐标系输入。使用弹性连接(Elastic Link)建立主塔上的支座。支座的支承条
10、件如下:SDx : tonf/m, SDy : tonf/m, SDz : 1000 tonf/m模型 / 边界条件 / 弹性连接 窗口缩放 (图21的)选项 添加 ; 连接类型 一般类型 弹性连接单元轴向刚度输入单位长度所施加的力,旋转刚度输入单位转角所施加的弯矩值。SDx (tonf/m) () ; SDy(tonf/m) () ; SDz(tonf/m) (1000) 剪切型弹性支承位置 (开) 到端点I的距离比 : SDy (1) ; SDz (1)Beta角 (0) 2点 (26,5) 输入剪切型弹性支座在弹性连接单元的位置。2点 (27,17) 调整弹性连接单元的布置方向。窗口放大
11、图 11. 建立主塔支座输入边界条件分析模型的边界条件如下。 主塔下端 : 固定端 (Dx, Dy, Dz, Rx, Ry, Rz) 桥台下端 : 铰支座 ( Dy, Dz, Rx, Rz)输入主塔和桥台处边界条件。 自动对齐 模型 / 边界条件 / 一般支承 窗口选择 (节点 : 图12的;节点22, 23)边界组名称 默认值选项 添加 ; 支承类型 D-ALL , R-ALL 窗口选择 (节点 : 图12的;节点1, 21)边界组名称 默认值选项 添加 ; 支承类型 Dy, Dz, Rx, Rz 图12. 输入边界条件索初拉力计算为了改善斜拉桥成桥阶段的加劲梁、主塔、拉索、支座的受力状态,
12、给拉索施加初拉力荷载,使之与恒荷载平衡。斜拉桥是多次超静定结构体系,所以计算拉索初拉力需要多次的反复计算。另外,对于每跟拉索的张力并不是只有一个解,对同一个斜拉桥不同的设计者可以选择不同的拉索初拉力。MIDAS/Civil的未知荷载系数功能使用了索力优化法则,可以计算出特定约束条件的最佳荷载系数,在计算斜拉桥拉索初拉力非常有效。使用未知荷载系数 功能计算斜拉桥拉索初拉力的计算步骤如表3。步骤1. 建立斜拉桥模型步骤2. 定义主梁恒荷载和拉索的单位荷载的荷载工况步骤3. 输入恒荷载和单位荷载步骤4. 建立恒荷载和单位荷载的荷载组合步骤5. 使用未知荷载系数 功能计算未知荷载系数步骤6. 查看分析
13、结果以及索初拉力表 3. 拉索初拉力计算步骤流程图初始平衡状态分析 为了使斜拉桥结构在恒载作用下拉索垂度、加劲梁纵段变形、拉索锚固点坐标、拉索张力、主塔坐标达到设计期望值,通过初始平衡状态分析计算初始节点坐标、拉索变形前长度、拉索初始张拉力。斜拉桥设计时,最重要的是如何使加劲梁和主塔的弯曲内力达到最小状态。通过初始平衡状态分析可以使恒载作用下成桥阶段变形形状接近于设计期望状态时,内力也会达到最小状态。对于斜拉桥分析,初始平衡状态分析非常重要,且初始平衡状态分析能够计算出变形前拉索长度、追踪拉索张力、加劲梁和主塔的预拱度、加劲梁的弯矩图等设计参数。 斜拉桥的特殊结构体系决定了主塔和加劲梁上将产生
14、很大的轴力,这些轴力和拉索的张力决定结构的变形形状。为了确定拉索的初始张力,桥轴方向的变形和拉索的张力要反映到结构分析计算中。但斜拉桥是多次超静定结构体系,计算拉索初拉力需要多次的反复计算,所以计算出满足初始状态分析的施工控制张力不是简单的事情。另外,对于每跟拉索的张力并不是只有一个解,对同一个斜拉桥不同的设计者可以计算出不同的拉索初拉力。指定受力状态的索力优化 (Traditional Zero Displacement Method) 目前一般的斜拉桥都会使用多拉索结构,所以拉索的横向分力对加劲梁的弯曲内力的影响可忽略不计。可以假设加劲梁弯曲内力由斜拉索竖向分力和加劲梁恒载作用下产生。此方
15、法为使拉索的锚固点的竖向位移接近“0”的方法,如果设计纵段线形比较完美时,加劲梁的弯矩分布与恒载作用下的刚性支承连续梁的状态比较接近。将梁、索交点处设以刚性支承进行分析,计算出各支点反力,利用索力的竖向分力与刚性支点反力相等的条件,计算其索力。只要加劲梁处斜拉索端部张力的竖向分力被确定,就不难计算出其水平分力和另一端的水平、竖向分力了。 利用计算得出的各分力,施加在没有拉索体系的结构上计算出加劲梁和主塔的弯矩分布情况。以此弯矩分布为目标,进行反复调索。反复调索步骤如下: 约束主塔的水平方向位移,张拉跨中拉索使跨中的加劲梁达到“0”位移状态。 解除主塔的水平方向位移,张拉边跨斜拉索使边跨加劲梁和
16、主塔达到“0”位移状态。 上述方法如图13所示。此方法假设结构变形为线性变形,使用影响矩阵来进行计算。最终纵段线形接近期望状态时,加劲梁弯矩分布就会与刚性支承连续梁的状态非常接近。(a) 恒荷载作用下的变形(调索前)(b) 固定主塔横向位移,恒荷载作用下的变形 (调索前)(c) 跨中调索(d) 解除主塔水平方向约束(e) 边跨调索图 13. 初始平衡状态分析步骤利用MIDAS/Civil的未知荷载系数功能计算拉索初拉力 给斜拉桥的拉索施加初拉力,使之加劲梁产生的弯矩趋于最小,用这种法法来设计出更大跨经桥梁。但是计算初始张力并不是简单的事情,过去设计人员一般都是采用经验值来计算初拉力。 目前虽然
17、计算斜拉桥拉索初拉力的方法很多,但是能够计算出满足设计条件的初拉力非常困难。 利用MIDAS/Civil优化索力功能,可以计算出最小误差范围内的能够满足特定约束条件的最佳荷载系数,利用这些荷载系数计算拉索初拉力。 优化索力时指定位移、反力、内力的“0”值以及最大最小值作为控制条件,把拉索初拉力作为变量来计算。 计算未知荷载系数适用于线性结构体系,为了计算出最佳的索力,必须要输入适当的控制条件。 一般要满足如下控制条件: 主塔不受或只受较小的弯矩作用 ; 主塔弯矩均匀分布 ; 最终索力不集中在几根拉索,而是均匀分布在每根拉索上。 定义荷载工况为了计算恒载引起的拉索初拉力,定义自重、二期荷载、拉索
18、单位初拉力等荷载工况。本例题斜拉桥为主塔两侧各有4根拉索的对称结构,需要的未知荷载系数为四个,定义四个荷载工况。 使用MCT命令窗口输入荷载工况更方便。荷载 / 静力荷载工况名称 (自重) ; 类型 恒荷载说明 (自重) 名称 (二期荷载) ; 类型 恒荷载说明 (二期荷载) 名称 (拉索 1) ; 类型 用户定义的荷载说明 (拉索 1- 单位初拉力) .名称 (拉索 4) ; 类型 用户自定义荷载说明 (拉索 4- 单位初拉力) 名称 (支座强制位移) ; 类型 用户自定义荷载说明 (边跨支座强制位移) 输入名称 (拉索 1)至名称 (拉索 4)的荷载工况。图 18. 恒载和单位荷载的荷载工
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- midas 斜拉桥 分析 操作 例题 75
限制150内