函数《周期性、对称性专题》(共14页).doc
《函数《周期性、对称性专题》(共14页).doc》由会员分享,可在线阅读,更多相关《函数《周期性、对称性专题》(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上函数的周期性与对称性函数的轴对称定理1:函数满足,则函数的图象关于直线对称.推论1:函数满足,则函数的图象关于直线对称.推论2:函数满足,则函数的图象关于直线(y轴)对称.函数的周期性定理2:函数对于定义域中的任意,都有,则是以为周期的周期函数;推论1:函数对于定义域中的任意,都有,则是以(ab)为周期的周期函数;推论2:下列条件都是以2T为周期的周期函数:专心-专注-专业 ; ; ; ; 函数的点对称定理3:函数满足,则函数的图象关于点对称.推论1:函数满足,则函数的图象关于点对称.推论2:函数满足,则函数的图象关于原点对称.函数轴对称、点对称与周期性定理4:若函数
2、在R上满足,且(其中),则函数以为周期.(若函数f(x)的图象关于直线x=a和x=b(ba)都轴对称,则函数f(x)有无数条对称轴,且f(x)为周期函数,并且2(b-a)是它的一个周期)定理5:若函数在R上满足,且(其中),则函数以为周期.(若函数f(x)的图象关于点(a,0)和(b,0)(ba)都成中心对称,则函数f(x)有无数个对称中心,且f(x)为周期函数,并且2(b-a)是它的一个周期)函数的奇偶性、对称性与周期性综合定理6:若函数在R上满足,且(其中),则函数以为周期.(若函数f(x)的图象既关于直线x= a成轴对称,又关于点(b,c)(ab)成中心对称,则f(x)为周期函数,并且4
3、(b-a)是它的一个周期)推论1:若奇函数f(x)的图象关于直线x=a(a0)轴对称,则f(x)为周期函数,4a是它的一个周期;推论2:若奇函数f(x)的图象关于点(a,0) (a0)中心对称,则f(x)为周期函数,2a是它的一个周期;推论3:若偶函数f(x)的图象关于直线x=a(a0)轴对称,则f(x)为周期函数,2a是它的一个周期;推论4:若偶函数f(x)的图象关于点(a,0) (a0)中心对称,则f(x)为周期函数,4a是它的一个周期。定理7:函数为偶函数函数关于直线x=a对称;函数为奇函数函数关于点对称。练习1:对称性1、设函数的定义域为R,且满足,则图象关于_对称。2、设函数的定义域
4、为R,且满足,则图象关于_对称。3、设函数的定义域为R,且满足,则图象关于_对称,图象关于_对称。4、设的定义域为R,且对任意,有,则图象关于_对称,关于_对称。5、已知函数对一切实数x满足,且方程有5个实根,则这5个实根之和为_ _ 。6、设函数的定义域为R,则下列命题中: 若是偶函数,则图象关于y轴对称; 是偶函数,则图象关于直线对称; ,则函数图象关于直线对称; 与图象关于直线对称.其中正确命题序号为_ _。练习2:周期性1、已知函数是上的偶函数,若对于,都有,且当时,则的值为( )A B C D2、已知定义在R上的奇函数,满足,且在区间0,2上是增函数,则 ( )A. B.C. D.3
5、、设是定义在上以6为周期的函数,在内单调递减,且的图像关于直线对称,则下面正确的结论是 ( ) A. B.C. D.4、函数对于任意实数满足条件,若则_ _。5、已知定义在R上的奇函数f(x)满足f(x+2)=f(x),则,f(6)的值为_ _。6、设函数f(x)定义在R上,满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在区间0,7上,只有f(1)= f(3)=0.试求方程f(x)=0在闭区间-2008,2008上的根的个数.7、函数定义域为R,且恒满足和,当时,求解析式。练习3:奇偶性、对称性与周期性综合1、函数的定义域为R,若与都是奇函数,则( ) A.是偶函数 B.是奇函
6、数 C. D.是奇函数2、若定义在R上的函数f(x)满足:对任意x1,x2R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是( )A.f(x)为奇函数 B.f(x)为偶函数 C.f(x)+1为奇函数 D.f(x)+1为偶函数3、定义在实数集上的奇函数恒满足,且时,则_ _。4、已知定义在R上的奇函数,满足,且在区间0,2上是增函数,若方程f(x)=m(m0)在区间上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=_5、设f(x)是定义在R上的奇函数,且它的图象关于直线x=对称。求f(1)+f(2)+f(3)+f(4)+f(5)的值_6、已知f(x)是定义在
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 周期性、对称性专题 函数 周期性 对称性 专题 14
限制150内