矩形的判定教学设计(共6页).doc
《矩形的判定教学设计(共6页).doc》由会员分享,可在线阅读,更多相关《矩形的判定教学设计(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课题:20.2矩形的判定 科目: 数学教学对象: 八年级课时: 一课时提供者:王玲艳单位: 襄汾二中一、教学内容分析本课是华师大版第20章第2节矩形的判定,主要研究矩形的判定方法,它不仅是本节的重点,也是以后学习正方形、圆等知识的基础,通过观察试验,归纳证明,培养学生的推理能力和演绎能力,为后面的学习奠定基础。二、教学目标 1、知识与技能理解并掌握矩形的三个判定方法.使学生能运用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.2、过程与方法能运用矩形的判定定理证明一个四边形是矩形 通过对命题的猜想,操作验证,逻辑推理,体现数学研究和发现的过
2、程,学会数 学思考的方法。 3、情感、态度和价值观 经历观察、操作、概括等探究过程,体验数学活动中既需要观察和操作,也需要进行合情的推理.让学生在探索过程中加深对矩形的理解,激发他们的求知欲望.培养学生逆向思维的能力.三、学习者特征分析根据平时的教学189班的学生智力水平较好,关是引导,课堂较活跃,要注意控制,具备四边形、平行四边形的判定等的知识,有一定的逻辑推理动力。对矩形的判定的认知结构只停留在是特殊的平行四边形的判定,未进行系统的学习和归纳总结。学生个体差异很大,这与学生学习风格与和学习倾向有关。四、教学策略选择与设计本节课是对矩形的判定方法进行探索,通过简单的实例,使学生能运用矩形的定
3、义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式.五、教学重点及难点重点:矩形的判定方法难点:合理应用矩形的判定定理解决问题解决方法:判定定理都是以“定义”为基础推导出来的.因此本节课要从复习矩形定义出发,并指出由平行四边形得到矩形只需添加一个独立条件.在教学中,除教材中所举的矩形实例外,还可以结合生产生活实际说明判定矩形的实用价值.六、教学过程教师活动学生活动设计意图(一)复习旧知,导入新课 1、同学们,前面我们在平行四边形的性质这一章已经学习矩形的定义及性质,你还记得它们吗?2、
4、矩形在我们的生活中处处存在,你能从教室里找到一些矩形吗?3、 你是怎样判断它是矩形的呢?现在老师手头上有卷尺和量角器这两样工具,你能进行说明吗?学生的积极性被调动起来,回忆知识,并进行交流,利用矩形的定义进行判断,动手操作。从学生身边的数学入手,通过设疑式导入,设置悬念,引起思考,使学生产生迫切学习的浓厚兴趣,诱导学生由疑到思,由思到知,由知到用,为后面的问题解决埋下伏笔。(二) 尝试探索,解决问题1,出示问题,引发猜想你猜想判断图形是否为矩形的方法还有哪些?你为什么有这样的猜想?你能否证明猜想的正确性?(学生可能有如下猜想):对角线相等的四边形是矩形或对角线相等的平行四边形是矩形或对角线互相
5、平分且相等的四边形是矩形四个角(三个角)是直角的四边形是矩形)1、已知:在平行四边形ABCD中,AC=DB, 求证:平行四边形ABCD是矩形。 证明:四边形ABCD是平行四边形,AB=DC。 又AC=DB,BC=CB, ABCDCB(s.s.s)ABC=DCB 又ABDC, ABC+DCB=180。 ABC=90。四边形ABCD是矩形。(有一个角是直角的平行四边形是矩形)(强调这种带有计算的证明题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算) 2、已知:在四边形ABCD中,A B C900。 求证:四边形ABCD是矩形。 证明:A+B+C+D=360,A=B=C=90,D=9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩形 判定 教学 设计
限制150内