高考数学--导数中二次求导的运用(共3页).doc
《高考数学--导数中二次求导的运用(共3页).doc》由会员分享,可在线阅读,更多相关《高考数学--导数中二次求导的运用(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高考数学-导数中二次求导的运用【理2010全国卷一第20题】已知函数.()若,求的取值范围;()证明:解析:先看第一问,首先由可知函数的定义域为,易得则由可知,化简得,这时要观察一下这个不等式,显然每一项都有因子,而又大于零,所以两边同乘可得,所以有,在对求导有,即当时,0,在区间上为增函数;当时,;当时,0,在区间上为减函数。所以在时有最大值,即。又因为,所以。应该说第一问难度不算大,大多数同学一般都能做出来。再看第二问。要证,只须证当时,;当时,即可。由上知,但用去分析的单调性受阻。我们可以尝试再对求导,可得,显然当时,;当时,即在区间上为减函数,所以有当时, ,
2、我们通过二次求导分析的单调性,得出当时,则在区间上为增函数,即,此时,则有成立。下面我们在接着分析当时的情况,同理,当时,即在区间上为增函数,则,此时,为增函数,所以,易得也成立。综上,得证。下面提供一个其他解法供参考比较。解:(),则题设等价于。令,则。当时,;当时,是的最大值点,所以 。综上,的取值范围是。()由()知,即。当时, 因为0,所以此时。当时,。所以比较上述两种解法,可以发现用二次求导的方法解题过程简便易懂,思路来得自然流畅,难度降低,否则,另外一种解法在解第二问时用到第一问的结论,而且运用了一些代数变形的技巧,解法显得偏而怪,同学们不易想出。不妨告诉同学们一个秘密:熟炼掌握二次求导分析是解决高考数学函数压轴题的一个秘密武器!【理2010安徽卷第17题】设为实数,函数。()求的单调区间与极值;()求证:当且时,。解析:第一问很常规,我们直接看第二问。首先要构造一个新函数,如果这一着就想不到,那没辙了。然后求导,结果见下表。 ,继续对求导得 减极小值增由上表可知,而,由知,所以,即在区间上为增函数。于是有,而,故,即当且时,。专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 导数 二次 求导 运用
限制150内