高中数学三角函数疑点难点讲解(共7页).doc
《高中数学三角函数疑点难点讲解(共7页).doc》由会员分享,可在线阅读,更多相关《高中数学三角函数疑点难点讲解(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学三角函数疑点难点讲解【考点审视】1、 掌握三角函数概念,其中以三角函数的定义学习为重点。(理科:兼顾反三角)2、 提高三角函数的恒等变形的能力,关键是熟悉诱导公式、同角关系、和差角公式及倍角公式等,掌握常见的变形方法。3、 解决三角函数中的求值问题,关键是把握未知与已知之间的联系。4、 熟练运用三角函数的性质,需关注复合问题,在问题转化过程中,进一步重视三角恒等变形。5、 掌握等的图象及性质,深刻理解图象变换之原理。6、 解决与三角函数有关的(常见的)最值问题。7、正确处理三角形内的三角函数问题,主要是理解并熟练掌握正弦定理、余弦定理及三角形内角和定理,提高边
2、角、角角转化意识。8、提高综合运用的能力,如对实际问题的解决以及与其它章节内容的整合处理。【疑难点拔】一、 概念不清例1 若、为第三象限角,且,则( )(A)(B)(C)(D)以上都不对错解 选(A)分析:角的概念不清,误将象限角看成类似区间角。如取,可知(A)不对。用排除法,可知应选(D)。二、 以偏概全例2 已知,求的值及相应的取值范围。错解 当是第一、四象限时,当是第二、三象限时,。分析:把限制为象限角时,只考虑且的情形,遗漏了界限角。应补充:当时,;当时,或。三、 忽略隐含条件例3 若,求的取值范围。错解 移项得,两边平方得即分析:忽略了满足不等式的在第一象限,上述解法引进了。正解:即
3、,由得 四、 忽视角的范围,盲目地套用正弦、余弦的有界性例4 设、为锐角,且+,讨论函数的最值。错解 可见,当时,;当时,。分析:由已知得,则当,即时,最大值不存在。五、 忽视应用均值不等式的条件例5 求函数的最小值。错解 当时,分析:在已知条件下,(1)、(2)两处不能同时取等号。正解: 当且仅当,即,时,专题四:三角函数【经典题例】 例1:点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点的坐标为( )(A) (B) (C) (D)思路分析 记,由三角函数定义可知Q点的坐标满足,故选(A)简要评述三角函数定义是三角函数理论的基础,理解掌握能起到事半功倍的效果。例2:求函数的最
4、小正周期、最大值和最小值.思路分析所以函数f(x)的最小正周期是,最大值是,最小值是.简要评述三角恒等变形是历年高考考察的主要内容,变形能力的提高取决于一定量的训练以及方法的积累,在此例中“降次、化同角”是基本的思路。此外,求函数的周期、最值是考察的热点,变形化简是必经之路。例3:已知,的值.思路分析 得 又于是 简要评述 此类求值问题的类型是:已知三角方程,求某三角代数式的值。一般来说先解三角方程,得角的值或角的某个三角函数值。如何使解题过程化繁为简,变形仍然显得重要,此题中巧用诱导公式、二倍角公式,还用到了常用的变形方法,即“化正余切为正余弦”。例4:已知b、c是实数,函数f(x)=对任意
5、、R有:且(1)求f(1)的值;(2)证明:c;(3)设的最大值为10,求f(x)。思路分析(1)令=,得令=,得因此;(2)证明:由已知,当时,当时,通过数形结合的方法可得:化简得c;(3)由上述可知,-1,1是的减区间,那么又联立方程组可得,所以简要评述三角复合问题是综合运用知识的一个方面,复合函数问题的认识是高中数学学习的重点和难点,这一方面的学习有利于提高综合运用的能力。例5:关于正弦曲线回答下述问题:(1)函数的单调递增区间是;(2)若函数的图象关于直线对称,则的值是 1 ;(3)把函数的图象向右平移个单位,再将图象上各点的横坐标扩大到原来的3倍(纵坐标不变),则所得的函数解析式子是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 三角函数 疑点 难点 讲解
限制150内