高中数学组卷——数列高考题训练(共16页).doc
《高中数学组卷——数列高考题训练(共16页).doc》由会员分享,可在线阅读,更多相关《高中数学组卷——数列高考题训练(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中数学组卷数列高考题训练一解答题(共15小题)1等差数列an中,a3+a4=4,a5+a7=6()求an的通项公式;()设bn=an,求数列bn的前10项和,其中x表示不超过x的最大整数,如0.9=0,2.6=22已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1()求数列bn的通项公式;()令cn=,求数列cn的前n项和Tn3已知an是公差为3的等差数列,数列bn满足b1=1,b2=,anbn+1+bn+1=nbn()求an的通项公式;()求bn的前n项和4已知an是等比数列,前n项和为Sn(nN*),且=,S6=63(1)求an的通
2、项公式;(2)若对任意的nN*,bn是log2an和log2an+1的等差中项,求数列(1)nb的前2n项和5设数列an的前n项和为Sn,已知2Sn=3n+3()求an的通项公式;()若数列bn,满足anbn=log3an,求bn的前n项和Tn6设等差数列an的公差为d,前n项和为Sn,等比数列bn的公比为q,已知b1=a1,b2=2,q=d,S10=100(1)求数列an,bn的通项公式(2)当d1时,记cn=,求数列cn的前n项和Tn7Sn为数列an的前n项和,已知an0,an2+2an=4Sn+3(I)求an的通项公式:()设bn=,求数列bn的前n项和8已知数列an是递增的等比数列,且
3、a1+a4=9,a2a3=8(1)求数列an的通项公式;(2)设Sn为数列an的前n项和,bn=,求数列bn的前n项和Tn9已知数列an是首项为正数的等差数列,数列的前n项和为(1)求数列an的通项公式;(2)设bn=(an+1)2,求数列bn的前n项和Tn10已知数列an满足an+2=qan(q为实数,且q1),nN*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和an的通项公式;(2)设bn=,nN*,求数列bn的前n项和11设数列 an的前n项和为Sn,nN*已知a1=1,a2=,a3=,且当n2时,4Sn+2+5Sn=8Sn+1+Sn1(1)求a4的
4、值;(2)证明:an+1an为等比数列;(3)求数列an的通项公式12数列an满足:a1+2a2+nan=4,nN+(1)求a3的值;(2)求数列an的前 n项和Tn;(3)令b1=a1,bn=+(1+)an(n2),证明:数列bn的前n项和Sn满足Sn2+2lnn13已知数列an的前n项和Sn=,nN*(1)求数列an的通项公式;(2)证明:对任意的n1,都存在mN*,使得a1,an,am成等比数列14数列an满足a1=1,nan+1=(n+1)an+n(n+1),nN*()证明:数列是等差数列;()设bn=3n,求数列bn的前n项和Sn15设等差数列an的公差为d,点(an,bn)在函数f
5、(x)=2x的图象上(nN*)(1)若a1=2,点(a8,4b7)在函数f(x)的图象上,求数列an的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2,求数列的前n项和Tn一解答题(共15小题)1等差数列an中,a3+a4=4,a5+a7=6()求an的通项公式;()设bn=an,求数列bn的前10项和,其中x表示不超过x的最大整数,如0.9=0,2.6=2【解答】解:()设等差数列an的公差为d,a3+a4=4,a5+a7=6,解得:,an=;()bn=an,b1=b2=b3=1,b4=b5=2, b6=b7=b8=3,b9=b10=4故数列bn
6、的前10项和S10=31+22+33+24=242已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1()求数列bn的通项公式;()令cn=,求数列cn的前n项和Tn【解答】解:()Sn=3n2+8n,n2时,an=SnSn1=6n+5,n=1时,a1=S1=11,an=6n+5;an=bn+bn+1,an1=bn1+bn,anan1=bn+1bn12d=6,d=3,a1=b1+b2,11=2b1+3,b1=4,bn=4+3(n1)=3n+1;()cn=6(n+1)2n,Tn=622+322+(n+1)2n,2Tn=6222+323+n2n+(n+1)2n+1,可得
7、Tn=622+22+23+2n(n+1)2n+1=12+66(n+1)2n+1=(6n)2n+1=3n2n+2,Tn=3n2n+23已知an是公差为3的等差数列,数列bn满足b1=1,b2=,anbn+1+bn+1=nbn()求an的通项公式;()求bn的前n项和【解答】解:()anbn+1+bn+1=nbn当n=1时,a1b2+b2=b1b1=1,b2=,a1=2,又an是公差为3的等差数列,an=3n1,()由(I)知:(3n1)bn+1+bn+1=nbn即3bn+1=bn即数列bn是以1为首项,以为公比的等比数列,bn的前n项和Sn=(13n)=4已知an是等比数列,前n项和为Sn(nN
8、*),且=,S6=63(1)求an的通项公式;(2)若对任意的nN*,bn是log2an和log2an+1的等差中项,求数列(1)nb的前2n项和【解答】解:(1)设an的公比为q,则=,即1=,解得q=2或q=1若q=1,则S6=0,与S6=63矛盾,不符合题意q=2,S6=63,a1=1an=2n1(2)bn是log2an和log2an+1的等差中项,bn=(log2an+log2an+1)=(log22n1+log22n)=nbn+1bn=1bn是以为首项,以1为公差的等差数列设(1)nbn2的前2n项和为Tn,则Tn=(b12+b22)+(b32+b42)+(b2n12+b2n2)=b
9、1+b2+b3+b4+b2n1+b2n=2n25设数列an的前n项和为Sn,已知2Sn=3n+3()求an的通项公式;()若数列bn,满足anbn=log3an,求bn的前n项和Tn【解答】解:()因为2Sn=3n+3,所以2a1=31+3=6,故a1=3,当n1时,2Sn1=3n1+3,此时,2an=2Sn2Sn1=3n3n1=23n1,即an=3n1,所以an=()因为anbn=log3an,所以b1=,当n1时,bn=31nlog33n1=(n1)31n,所以T1=b1=;当n1时,Tn=b1+b2+bn=+(131+232+(n1)31n),所以3Tn=1+(130+231+332+(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中 数学组 数列 考题 训练 16
限制150内