二次函数根地分布和最值(共17页).doc
《二次函数根地分布和最值(共17页).doc》由会员分享,可在线阅读,更多相关《二次函数根地分布和最值(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程根的分布情况设方程的不等两根为且,相应的二次函数为,方程的根即为二次函数图象与轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表二:(两根与的大小比较)分布情况两根都小于即两根都大于即一个根小于,一个大于即大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表三:(根在区间上的分布)分布情况
2、两根都在内两根有且仅有一根在内(图象有两种情况,只画了一种)一根在内,另一根在内,大致图象()得出的结论或大致图象()得出的结论或综合结论(不讨论)根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧,(图形分别如下)需满足的条件是 (1)时,; (2)时,对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在内有以下特殊情况: 若或,则此时不成立,但对于这种情况是知道了方程有一根为或,可以求出另外一根,然后可以根据另一根在区间内,从而可以求出参数的值。如方程在区间上有一根,因为,所以,另一根为,由得即为所求; 方程有且只有一根,且这个根在区间内,即,此时由可以求出参数的值,
3、然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程有且一根在区间内,求的取值范围。分析:由即得出;由即得出或,当时,根,即满足题意;当时,根,故不满足题意;综上分析,得出或根的分布练习题例1、已知二次方程有一正根和一负根,求实数的取值范围。解:由 即 ,从而得即为所求的范围。例2、已知方程有两个不等正实根,求实数的取值范围。解:由 或即为所求的范围。例3、已知二次函数与轴有两个交点,一个大于1,一个小于1,求实数的取值范围。解:由 即 即为所求的范围。例4、已知二次方程只有一个正根且这个根小于1,求实数的取值范围。解:由题意有方程在区间上只有一个
4、正根,则 即为所求范围。(注:本题对于可能出现的特殊情况方程有且只有一根且这个根在内,由计算检验,均不复合题意,计算量稍大)1二次函数及图象设有一元二次函数y=ax2+bx+c(a0),判别式=b2-4ac,当0时y=f(x)与x轴有二交点;当=0时,y=f(x)与x轴仅有一交点;当0时,y=f(x)与x轴无交点当0时,设y=f(x)图象与x轴两交点为x1x2一元二次函数y=f(x)与x轴交点x1,x2就是相应一元二次方程f(x)=0的两根观察图象不难知道图像为观察图象不难知道=0,a0, =0,a0当0时,y=f(x)图象与x轴无公共点,其图象为观察图象不难知道a0时,绝对不等式f(x)0解
5、为xRa0时,绝对不等式f(x)0解为xR2讨论一元二次方程的根的分布情况时,往往归结为不等式(组)的求解问题,其方法有3种:(1)应用求根公式;(2)应用根与系数关系;(3)应用二次函数图象在进行转化时,应保证这种转化的等价性就这三种方法而言,应用二次函数图象和性质应是比较简捷的一种方法设f(x)=ax2bxc(a0),方程ax2bxx=0的个根为,(),m,n为常数,且nm,方程根的分布无外乎两种情况:,同居一区间时,不但要考虑端点函数值的符号,还要考虑三、好题解给你(1) (1) 预习题1. 设有一元二次函数y2x2-8x+1试问,当x3,4时,随x变大,y的值变大还是变小?由此yf(x
6、)在3,4上的最大值与最小值分别是什么?解:经配方有y2(x-2)2-7对称轴x2,区间3,4在对称轴右边,yf(x)在3,4上随x变大,y的值也变大,因此ymax=f(4)1yminf(3)-52.设有一元二次函数y2x2-4ax+2a2+3试问,此函数对称轴是什么?当x3,4时,随x变大,y的值是变大还是变小?与a取值有何关系?由此,求yf(x)在3,4上的最大值与最小值解:经配方有y2(x-a)2+3对称轴为x=a当a3时,因为区间3,4在对称轴的右边,因此,当x3,4时,随x变大,y的值也变大当3a4时,对称轴x=a在区间3,4内,此时,若3xa,随x变大,y的值变小,但若ax4,随x
7、变大,y的值变大当4a时,因为区间3,4在对称轴的左边,因此,当x3,4时,随x变大,y的值反而变小根据上述分析,可知当a3时,ymax=f(4)=2a2-16a+35ymin=f(3)2a2-12a+21当3a4时,yminf(a)3其中,a3.5时,ymaxf(4)2a2-16a+35a3.5时,ymaxf(3)2a2-12a+21当a4时,ymaxf(3)2a2-12a+21yminf(4)2a2-16a+35(2) (2) 基础题例1设有一元二次方程x2+2(m-1)x+(m+2)0试问:(1)m为何值时,有一正根、一负根(2)m为何值时,有一根大于1、另一根小于1(3)m为何值时,有
8、两正根(4)m为何值时,有两负根(5)m为何值时,仅有一根在1,4内?解:(1)设方程一正根x2,一负根x1,显然x1、x20,依违达定理有m+20 m-2反思回顾:x1、x20条件下,ac0,因此能保证0(2)设x11,x21,则x1-10,x2-10只要求(x1-1)(x2-1)0,即x1x2-(x1+x2)+10依韦达定理有(m+2)+2(m-1)+10(3)若x10,x20,则x1+x20且x1,x20,故应满足条件依韦达定理有(5)由图象不难知道,方程f(x)0在3,4内仅有一实根条件为f(3)f(4)0,即9+6(m-1)+(m+2)16+8(m-1)+(m+2)0(7m+1)(9
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 分布 17
限制150内