北师大版八年级上册2.2平方根(二)教案(共3页).doc
《北师大版八年级上册2.2平方根(二)教案(共3页).doc》由会员分享,可在线阅读,更多相关《北师大版八年级上册2.2平方根(二)教案(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2.2平方根(二)教学目标:1、了解平方根的概念,会用根号表示一个数的平方根。 2、会求一个正数的平方根。 3、了解平方根和算术平方根的性质。 4、了解乘方和开方是互逆运算,会利用这个互逆运算求某些非负数的算术平方根和平方根。教学重点:了解平方根和开平方的概念、性质,会用根号表示一个正数的算术平方根和平方根。教学难点:平方根和算术平方根的区别。负数没有平方根,即负数不能进行开平方运算。教学过程:一、复习提问1、算术平方根的概念,任何一个有理数都有算术平方根吗?算术平方根有什么性质。2、9的算术平方根是 ,3的平方是 ,还有其他的数的平方是9吗?二、讲授新课:1.想一想
2、平方等于的数有几个?平方等于0.64的数呢?学生活动:学生思考,然后交流,得出平方根的定义。2.教师活动:一般地,如果一个数的平方等于,即,那么,这个数就叫做的平方根。也叫做二次方根。3和3的平方都是9,即9的平方根有两个3和3;9的算术平方根只有个,是3。3.学生活动:求出下列各数的平方根。16,0,25,三、议一议:(1)一个正数的有几个平方根?(2)0有几个平方根?(3)负数呢?教师活动:一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。学生活动:正数的两个平方根有什么关系吗?讨论,交流得出:一个正数有两个平方根,一个是的算术平方根,“”,另一个是“”,它们互为相反数。
3、这两个平方根合起来,可以记做“”,读作“正、负根号”。 开平方:求一个数的平方根的运算,叫做开平方。其中叫做被开方数。(已知指数和幂,求底数的运算是开方运算)教师活动开平方和平方互为逆运算,我们可以利用平方运算来求平方根。四、例题精析:例1 求下列各数的平方根:(1)64,(2),(3)0.0004, (4)(-25)2, (5)11注意书写格式。五、随堂练习:P36 1、2例2 若;教师活动:通过例2,要学生进一步明白平方根与算术平方根在应用上的区别。六、想一想师生互动,讨论交流得出:0)七、小结:1. 平方根的定义、表示方法、求法、性质。平方根和算术平方根的区别和联系。2.使学生学到由特殊到一般的归纳法。八、作业:P36 习题2.4和试一试 P53 3补充: 你能求出下列各式中的未知数x吗?(1) x249(2)(x1)225专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 上册 2.2 平方根 教案
限制150内