二次函数难点突破(共13页).doc
《二次函数难点突破(共13页).doc》由会员分享,可在线阅读,更多相关《二次函数难点突破(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数为什么是中考代数部分最难点 2015北京中考五大模块深度剖析之二次函数 学而思北京中考研究中心专家团顾问:陈金根主编:魏巍 刘蕾 费新斌 讨论:董小磊 牛丽娟 许秀霞 刘鹏农 林儒强 齐永确 高晓雪 根据2015年北京教育考试院下发的 北京市高级中等学校招生考试说明数学得知,北京中考对二次函数的考试要求达到最高级别C级要求(Tips:C级要求通常以压轴题形式出现),同学们应当引起重视。 北京中考每年主要有两道题目考查二次函数的知识(并且其中一道为压轴题目),涉及分值11分左右,约占全卷总分值的10%,这一比例相当于普通章节的三倍,比重之大,可见一斑。那么,北京
2、中考对于二次函数的考查,难度系数到底有多大?考点又有哪些?需要掌握哪些解题方法和技巧?接下来,我们就二次函数在北京中考中的考察情况,为参加中考的同学做出以下3点分享:1、难度分析及考点分析;2、方法技巧提炼、针对最难点给出13个原创的题目进行针对性解决;3、限时巩固练习。一、【二次函数为什么是中考代数部分的最难点?】1、 二次函数主要以压轴题形式考查,难度高,得分率低年份题号类型分值平均分难度系数201423综合题7分3.64分0.52201425综合题8分1.44分0.18201310填空题4分3.24分0.81201323综合题7分3.22分0.46201223综合题7分3.01分0.43
3、20117选择题4分3.12分0.78201123综合题7分3.08分0.44(部分数据来源:北京市教育考试院数据分析统计报告)北京中考二次函数主要以综合题的形式考查,通常出现在整张试卷的倒数第三题。通过对近4年北京中考二次函数考查情况的分析,我们发现,二次函数综合题得分率低,难度系数小,约为0.40.5(Tips:难度系数越小,难度越大。中考数学整体难度系数约0.72。),属于中考数学的压轴题之一。2、 二次函数综合性强,最后一问考查数形结合思想,区分度大真题考查考点中考要求分值难度2014中考23题(1)问二次函数的图象和性质、解析式B1分易2014中考23题(2)问二次函数与方程和不等式
4、C5分难2013中考23题(3)问二次函数与方程和不等式C3分难2012中考23题(1)问二次函数的解析式B2分易2012中考23题(2)问二次函数的图象和性质B1分中2012中考23题(3)问二次函数与方程和不等式C3分难2011中考23题(1)问二次函数的图象和性质B2分易2011中考23题(3)问二次函数与方程和不等式C3分难 结合20112014年的中考23题(Tips:二次函数综合压轴题),概括地说,二次函数综合压轴题是以函数为主线,结合一元二次方程的有关知识,运用几何图形的性质的综合性试题。二次函数综合题一般为3小问, 考点主要是两点:I. 前两问是对开口方向、对称轴、顶点坐标、解
5、析式等基础知识的考查,满分4分,考生平均分2.71分左右。(属于必拿分题目)II. 最后一问是对二次函数与一次函数交点的情况、二次函数与方程不等式的关系等综合的考查,满分3分,考场平均分0.52分左右,最后一问是导致失分,拉开学生之间的差距的关键。(属压轴部分)3、 如何突破二次函数的最难点,实现二次函数综合题满分? 通过对中考二次函数难度分析和考点分析,学而思北京中考研究中心给初三考生的建议是:I. 二次函数综合题的第(1)问或前两问的正确率在60%以上,再结合2015年北京市教育考试院给出的关于中考改革的意见来看,今年中考综合难度会略有降低,意味着这两问难度继续降低,所以要参加中考的同学一
6、定要把此题前两问分数拿到,以免被拉开差距。II. 最后一问的正确率在20%以下,得分率低,难度大,这是二次函数压轴题的核心,也是整张试卷中起到中考选拔作用的题目,所以建议要参加中考的同学专项训练二次函数综合题最后一问的典型题目,总结归纳对应的解题方法和技巧。 那么怎么才能把最后一问的分数收入囊中呢?为帮助同学们顺利解决二次函数压轴题,学而思北京中考研究中心团队通过数百道真题分析,提炼两种方法技巧,原创13种变式题,为初三同学们带来权威、实用的解题秘籍。二、【2个技巧13个原创变式解决二次函数最难点】1、近两年考试真题剖析,方法技巧提炼考查方式:从前几年所考二次函数的综合性问题可以看出,命题模式
7、比较固定,都是给出一个含有字母系数的二次函数,通过某些条件确定这个二次函数的解析式,然后基于这个已知的二次函数讨论某个一次函数和它(或它的一部分或它的变化形式)的交点情况(二次函数压轴题一般有3小问)【二次函数压轴题第(1)(2)问的解决技巧】:技巧1. (1)若给出确定的解析式:第一步:计算出对称轴(利用或者)第二步:再利用因式分解或求根公式求出抛物线与坐标轴的交点(2)若给出含字母系数的解析式:第一步:根据各种特定的已知条件求出二次函数解析式(注意二次项系数不为0);第二步:求出对称轴及抛物线与坐标轴交点坐标;第三步:若求一次函数与二次函数的交点,只需把两解析式联立解方程组即可;第四步:若
8、有图像变换直接利用平移结论“上加下减,左加右减”,或对称公式来解决,这些都是解决最后一问的前提注意:求抛物线对称轴最重要!对称轴和交点都定后,之后再怎么变化就都尽在掌握了【二次函数压轴题第(3)问的解决技巧】:技巧2. 搞定它的秘籍首先就是精确作图,一定要用100%的耐心加细心把图象画好,这是中考说明中给出的A级,是最基本的要求,再找出临界点(临界点:图象边缘的两个点,不等式中恰好在边界的那些数值),利用临界点确定字母系数的值或取值范围。【真题案例对比分析12014年北京中考23题】在平面直角坐标系中,抛物线经过点,(1)求抛物线的表达式及对称轴;(2)设点关于原点的对称点为,点是抛物线对称轴
9、上一动点,记抛物线在,之间的部分为图象(包含,两点)若直线与图象有公共点,结合函数图象,求点纵坐标的取值范围技巧1. 给出含字母系数的解析式:那首先根据已知,两点坐标求出二次函数解析式。确定解析式后,直接计算出对称轴。【解析】(1) 经过点,代入得:, 抛物线的表达式为对称轴.技巧2. 首先精确作图,再找到D点的临界位置,发现C点的纵坐标和顶点的纵坐标一样,那么D点最低就是顶点,再连接和发现哪条直线和对称轴交点比较高?显然是,问题就搞定了。直接代入解析式即可。(2)由题意可知,二次函数的最小值为,由图象可以看出点纵坐标最小值即为,最大值即与对称轴交点。直线的解析式当时,【真题案例对比分析220
10、13年北京中考23题】在平面直角坐标系中,抛物线与轴交于点,其对称轴与轴交于点(1)求点,的坐标;(2)设直线与直线关于该抛物线的对称轴对称,求直线的解析式;(3)若该抛物线在这一段位于直线的上方,并且在这一段位于直线的下方,求该抛物线的解析式技巧1. 解析式中只有一个字母系数,而且题干中提到了对称轴,那么直接利用求出对称轴你看看,连续两年都考对称轴,它重要不重要?!你再看看2012年,一样也考!【解析】(1)令,得, 则, 又对称轴, 则(2)由(1)可知,直线的解析式, 关于对称轴对称后的解析式为(3)技巧2. 第(3)问说了一堆什么这一段位于直线上方,那一段位于直线下方,是不是很晕很迷茫
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 难点 突破 13
限制150内