函数的概念与表示法(经典)(共10页).doc
《函数的概念与表示法(经典)(共10页).doc》由会员分享,可在线阅读,更多相关《函数的概念与表示法(经典)(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上函数的概念及其表示法考点一:由函数的概念判断是否构成函数函数概念:设A、B是非空的数集,如果按照某种确定的关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数。例1. 下列从集合A到集合B的对应关系中,能确定y是x的函数的是( ) A=x xZ,B=y yZ,对应法则f:xy=; A=x x0,xR, B=y yR,对应法则f:x=3x; A=R,B=R, 对应法则f:xy=;变式1. 下列图像中,是函数图像的是( )yyyy OOOOXXXX 变式2. 下列式子能确定y是x的函数的有( ) =
2、2 y= A、0个 B、1个 C、2个 D、3个变式3. 已知函数y=f(x),则对于直线x=a(a为常数),以下说法正确的是( )A. y=f(x)图像与直线x=a必有一个交点 B.y=f(x)图像与直线x=a没有交点C.y=f(x)图像与直线x=a最少有一个交点 D.y=f(x)图像与直线x=a最多有一个交点变式4.对于函数yf(x),以下说法正确的有()y是x的函数对于不同的x,y的值也不同f(a)表示当xa时函数f(x)的值,是一个常量f(x)一定可以用一个具体的式子表示出来A1个 B2个 C3个 D4个变式5设集合Mx|0x2,Ny|0y2,那么下面的4个图形中,能表示集合M到集合N
3、的函数关系的有()A B C D考点二:同一函数的判定函数的三要素:定义域、对应关系、值域。如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。例2. 下列哪个函数与y=x相同( ). y= . . .y=t .;.变式1.下列函数中哪个与函数相同( ) A. B. C. D. 变式2. 下列各组函数表示相等函数的是( ) A. 与 B. 与 C. (x0) 与 (x0) D. ,xZ 与,xZ变式3. 下列各组中的两个函数是否为相同的函数?(1) (2) (3) 考点三:求函数的定义域(1)当f(x)是整式时,定义域为R;(2)当f(x)是分式时,定义域是使分母不为0的x
4、取值集合;(3)当f(x)是偶次根式时,定义域是使被开方式取非负值的x取值集合;(4)当f(x)是零指数幂或负数指数幂时,定义域是使幂的底数不为0的x取值集合;(5)当f(x)是对数式时,定义域是使真数大于0且底数为不等于1的正数的x取值集合;已学函数的定义域和值域1一次函数:定义域R, 值域R;2反比例函:定义域, 值域;3二次函数:定义域R值域:当时,;当时,例3. 函数的定义域是( )A. B. ( -1 , 1 ) C. -1 , 1 D. (- ,-1 )( 1 ,+ )函数y的定义域是(用区间表示)_变式1. 求下列函数的定义域(1); (2); (3).(4) (5)yx; (6
5、)y; (7)y(x1)0.求复合函数的定义域例5. 已知函数f()定义域为, 求f(x)的定义域 变式1. 已知函数f()的定义域为 0,3 ,求f(x)的定义域变式2. 已经函数f(x)定义域为 0 , 4, 求f的定义域考点四:求函数的值域例6求下列函数的值域 , x1,2 ,3,4,5 ( 观察法 ) ,x ( 配方法 :形如 ) ( 换元法:形如 ) ( 分离常数法:形如 ) ( 判别式法:形如 )变式1. 求下列函数的值域 y = 考点五:求函数的解析式例7 . 已知f(x)= ,求f()的解析式 ( 代入法 / 拼凑法/换元法 )变式1. 已知f(x)= , 求f()的解析式变式
6、2. 已知f(x+1)= ,求f(x)的解析式变式3. 已知,试求的解析式.例8. 若f f(x) = 4x+3,求一次函数f(x)的解析式 ( 待定系数法 )变式1. 已知f(x)是二次函数,且,求f(x).变式2.一次函数满足,求该函数的解析式.变式3已知多项式,且.试求、的值.变式4已知f(x)是二次函数,且f(0)=2,f(x+1)f(x)=x1,求f(x)的解析式.变式5已知二次函数f(x)x2bxc满足f(1x)f(1x), 且f(0)3,求f(x)的解析式.变式6.已知函数f(x)是一次函数,且满足3f(x1)2f(x1)2x17,求f(x).例9. 已知f(x)2 f(x)=
7、x ,求函数f(x)的解析式 ( 消去法/ 方程组法 )变式1. 已知2 f(x) f(x)= x+1 ,求函数f(x)的解析式 变式2. 已知2 f(x)f = 3x ,求函数f(x)的解析式例10. 设对任意数x,y均有,求f(x)的解析式. ( 赋值法 / 特殊值法)变式1. 已知对一切x,yR,都成立,且f(0)=1,求f(x)的解析式.考点六:函数的求值例11. 已经函数f(x)= ,求f(2)和f(a)+f (a)的值变式1. 已知f(2x)= ,求f(2)的值例12. 已知函数,求f(1)+f()的值 变式1. 已知函数 ,求f f()的值变式2. 已知函数,求f(5)的值例13
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 概念 表示 经典 10
限制150内