第二章-实数经典例题及习题(共13页).doc
《第二章-实数经典例题及习题(共13页).doc》由会员分享,可在线阅读,更多相关《第二章-实数经典例题及习题(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上经典例题类型一有关概念的识别1下面几个数:0.23 ,1.,3,其中,无理数的个数有( )A、1 B、2 C、3 D、4解析:本题主要考察对无理数概念的理解和应用,其中,1.,3,是无理数故选C举一反三:【变式1】下列说法中正确的是( )A、的平方根是3 B、1的立方根是1 C、=1 D、是5的平方根的相反数【答案】本题主要考察平方根、算术平方根、立方根的概念,=9,9的平方根是3,A正确1的立方根是1,=1,是5的平方根,B、C、D都不正确【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示
2、的数是( )A、1 B、1.4 C、 D、【答案】本题考察了数轴上的点与全体实数的一一对应的关系正方形的边长为1,对角线为,由圆的定义知|AO|=,A表示数为,故选C【变式3】 【答案】= 3.1415,9310因此3-90,3-100 类型二计算类型题2设,则下列结论正确的是( ) A. B. C. D. 解析:(估算)因为,所以选B举一反三:【变式1】1)1.25的算术平方根是_;平方根是_.2) -27立方根是_. 3)_, _,_. 【答案】1);.2)-3. 3), , 【变式2】求下列各式中的(1) (2)(3)【答案】(1)(2)x=4或x=-2(3)x=-4类型三数形结合 3.
3、 点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为_解析:在数轴上找到A、B两点,举一反三:【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是( )A1 B1 C2 D2【答案】选C变式2 已知实数、在数轴上的位置如图所示: 化简 【答案】:类型四实数绝对值的应用4化简下列各式:(1) |-1.4|(2) |-3.142|(3) |-| (4) |x-|x-3| (x3)(5) |x2+6x+10|分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。解:(1) =1.4141
4、.4 |-1.4|=1.4-(2) =3.141593.142 |-3.142|=3.142-(3) , |-|=-(4) x3, x-30, |x-|x-3|=|x-(3-x)| =|2x-3| = 说明:这里对|2x-3|的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。(5) |x2+6x+10|=|x2+6x+9+1|=|(x+3)2+1|(x+3)20, (x+3)2+10|x2+6x+10|= x2+6x+10举一反三:【变式1】化简:【答案】=+-=类型五实数非负性的应用5已知:=0,求实数a, b的值。分析:已知等式左边分母不能为0,只能有0,
5、则要求a+70,分子+|a2-49|=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组 从而求出a, b的值。解:由题意得 由(2)得 a2=49 a=7由(3)得 a-7,a=-7不合题意舍去。只取a=7把a=7代入(1)得b=3a=21a=7, b=21为所求。举一反三:【变式1】已知(x-6)2+|y+2z|=0,求(x-y)3-z3的值。解:(x-6)2+|y+2z|=0且(x-6)20, 0, |y+2z|0,几个非负数的和等于零,则必有每个加数都为0。 解这个方程组得 (x-y)3-z3=(6-2)3-(-1)3=64+1=65【变式2】已知那么a+b-c的值
6、为_【答案】初中阶段的三个非负数: ,a=2,b=-5,c=-1; a+b-c=-2类型六实数应用题6有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少cm。解:设新正方形边长为xcm,根据题意得 x2=112+138x2=225x=15边长为正,x=-15不合题意舍去,只取x=15(cm)答:新的正方形边长应取15cm。举一反三:【变式1】拼一拼,画一画: 请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下的空白区域恰好是一个小正方形。(4个长方形拼图时不重叠) (1)计算中间的小正方形的面积,聪明的你能发
7、现什么? (2)当拼成的这个大正方形边长比中间小正方形边长多3cm时,大正方形的面积就比小正方形的面积 多24cm2,求中间小正方形的边长.解析:(1)如图,中间小正方形的边长是: ,所以面积为= 大正方形的面积=, 一个长方形的面积=。 所以, 答:中间的小正方形的面积,发现的规律是:(或) (2) 大正方形的边长:,小正方形的边长: ,即 , 又 大正方形的面积比小正方形的面积多24 cm2 所以有, 化简得: 将代入,得: cm 答:中间小正方形的边长2.5 cm。类型七易错题7判断下列说法是否正确(1)的算术平方根是-3;(2)的平方根是15.(3)当x=0或2时,(4)是分数解析:(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 实数 经典 例题 习题 13
限制150内